首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  2023年   1篇
  2019年   1篇
  2018年   2篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  1992年   1篇
  1991年   1篇
  1984年   1篇
  1977年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Hematoporphyrin ability to photoreact by type I and type II mechanisms was investigated in some model systems. At room temperature, visible irradiation of hematoporphyrin-unsaturated fatty acids and hematoporphyrin-cholesterol systems resulted in the Electron Spin Resonance (ESR) spectrum of the hematoporphyrin free radical. Triplet state hematoporphyrin is shown to be involved in the electron transfer from the lipid moiety. Moreover an ESR method to monitor the singlet oxygen production by hematoporphyrin was used. β-carotene effect on both mechanisms (type I and type II) was tested.  相似文献   
2.
Hydroxytyrosol (2-(3′,4′-dihydroxyphenyl)ethanol; HT), the most active ortho-diphenolic compound, present either in free or esterified form in extravirgin olive oil, is extensively metabolized in vivo mainly to O-methylated, O-sulfated and glucuronide metabolites. We investigated the capacity of three glucuronide metabolites of HT, 3′-O-β-d-glucuronide and 4′-O-β-d-glucuronide derivatives and 2-(3′,4′-dihydroxyphenyl)ethanol-1-O-β-d-glucuronide, in comparison with the parent compound, to inhibit H2O2 induced oxidative damage and cell death in LLC-PK1 cells, a porcine kidney epithelial cell line. H2O2 treatment exerted a toxic effect inducing cell death, interacting selectively within the pro-death extracellular-signal relate kinase (ERK 1/2) and the pro-survival Akt/PKB signaling pathways. It also produced direct oxidative damage initiating the membrane lipid peroxidation process. None of the tested glucuronides exhibited any protection against the loss in renal cell viability. They also failed to prevent the changes in the phosphorylation states of ERK and Akt, probably reflecting their inability to enter the cells, while HT was highly effective. Notably, pretreatment with glucuronides exerted a protective effect at the highest concentration tested against membrane oxidative damage, comparable to that of HT: the formation of malondialdehyde, fatty acid hydroperoxides and 7-ketocholesterol was significantly inhibited.  相似文献   
3.
4.
5.
It is fully established that the condensing reaction for the initiation of fatty acid synthesis is essential for viability of many bacteria. In model bacteria such as Escherichia coli, this reaction is exclusively catalyzed by β-ketoacyl-ACP synthase (KAS) III (encoded by fabH) and the FabH loss results in a fatty acid auxotroph. However, such a notion has been under the challenge of recent findings. In an attempt to resolve the conflicting results, in this study, we examined the physiological role of multiple KASIII enzyme homologues in Shewanella oneidensis, an excellent model for researching type II fatty acid synthesis (FASII) and its regulation. We demonstrated that FabH1 and temperature-responsive FabH2 are primarily responsible for initiating synthesis of straight- and branched-chain fatty acids respectively, whereas FabH3 and OleA are dispensable. Cells lacking all these enzymes as a set are viable but carry severe defects in growth. Further analyses revealed that in the absence of KASIII either of FabB (KASI) and FabF2 (KASII) is able to support growth, suggesting that they could initiate FASII. Strikingly, KASIII enzymes and OleA together confer S. oneidensis cells resistance to cerulenin, a selective inhibitor of FabF and FabB. Along with our previous finding that S. oneidensis FabF1 and FabB are fully equivalent with respect to their physiological impacts, these results imply that physiological function promiscuity of bacterial KAS enzymes could be more extensive than previously expected.  相似文献   
6.
Yeast mutants defective in beta-hydroxy-beta-methylglutaryl-CoA synthase and acetoacetyl-CoA thiolase have been isolated. Mutants impaired in acetoacetyl-CoA thiolase range into two linked complementation units, erg 10 A and erg 10 B. Mutants deficient in beta-hydroxy-beta-methylglutaryl-CoA synthase belong to two unlinked complementation groups, erg 11 and erg 13. In strictly anaerobic growth conditions, mutants impaired in beta-hydroxy-beta-methylglutaryl-CoA synthase require mevalonic acid in addition to sterol and oleic acid, pointing out the role of mevalonic acid in other physiological function than ergosterol precursor. Growth of mutants impaired in acetoacetyl-CoA thiolase cannot be recovered by mevalonic acid supplementation, suggesting a role of acetoacetyl-CoA or thiolase not linked to sterol pathway.  相似文献   
7.
Quantitative fatty acid composition of microorganisms at various growth space points is required for understanding membrane associated processes of cells, but the majority of the relevant publications still restrict to the relative compositions. In the current study, a simple and reliable method for quantitative measurement of fatty acid content in bacterial biomass without prior derivatization using ultra performance liquid chromatography-electrospray ionization mass spectrometry was developed. The method was applied for investigating the influence of specific growth rate and pH on the fatty acid profiles of two biotechnologically important microorganisms — Gram-negative bacteria Escherichia coli and Gram-positive bacteria Lactococcus lactis grown in controlled physiological states. It was found that the membranes of slowly growing cells are more rigid and that the fatty acid fraction of the cells of L. lactis diminishes considerably with increasing growth rate.  相似文献   
8.
Abstract

DNA methylation is an important way of gene regulation. The variety of methods for DNA methylation analysis based on chemical modification or enzyme digestion has been proposed. However, DNA is able to undergo transformations under physical power. Here, we report that the cytosine methylation in CpG dinucleotides determines the difference in fragmentation rate of methylated and unmethylated DNA under sonication. We found that at the beginning of sonication, methylated DNAs are degraded faster than unmethylated one, and the difference in fragmentation degree can be evaluated with high reliability by quantitative polymerase chain reaction (qPCR). The optimal parameters that provide the greatest difference in amount of amplifiable DNA targets corresponding to fragmentation degree are the following: moderate amplicon size (about 150–250?bp), medium CpG sparseness (one CpG dinucleotide per ~12–14 nucleotides of the chain), and short sonication time (less than 5?min). Along with CpG, the CpA and CpT contents of amplified regions should be taken into account for proper DNA fragmentation by ultrasound as well. The obtained data could be used for elaboration of a method for comparative methylation testing, when there is no need to detect methylation of certain CpG dinucleotides. This method will be simple (can be used by any technician familiar with PCR), low cost (no need to use an expensive reagents), and fast (only brief DNA sonication and conventional qPCR are carried out).

Communicated by Ramaswamy H. Sarma  相似文献   
9.
Recent analytical advancements allow for large-scale glycomics and glycan-biomarker research with N-glycans released from complex protein mixtures of e.g. plasma with a wide range of protein concentrations. Protein enrichment techniques to obtain samples with a better representation of low-abundance proteins are hardy applied. In this study, hexapeptide ligands previously described for enrichment of low-abundance proteins in proteomics are evaluated for glycan analysis. A repeatable on-bead glycan release strategy was developed, and glycans were analyzed using capillary sieving electrophoresis on a DNA analyzer. Binding of proteins to the hexapeptide library occurred via the protein backbone. At neutral pH no discrimination between protein glycoforms was observed. Interestingly, glycan profiles of plasma with and without hexapeptide library enrichment revealed very similar patterns, despite the vast changes in protein concentrations in the samples. The most significant differences in glycosylation profiles were ascribed to a reduction in immunoglobulin-derived glycans. These results suggest that specific and sensitive biomarkers will be hard to access on the full plasma level using protein enrichment in combination with glycan analysis. Instead, fractionation techniques or profiling strategies on the glycopeptide level after enrichment are proposed for in-depth glycoproteomics research.  相似文献   
10.
The effect of modifying fatty acyl composition of cellular membrane phospholipids on receptor-mediated intracellular free Ca2+ concentration ([Ca2+]i) increase was investigated in a leukemic T cell line (JURKAT). After growing for 72 h in medium supplemented with unsaturated fatty acids (UFAs) and α-tocopherol, the fatty acyl composition of membrane phospholipids in JURKAT cells was extensively modified. Each respective fatty acid supplemented in the culture medium was readily incorporated into phosphatidylinositol, phosphatidylserine, phosphatidylethanolamine and phosphatidylcholine in the JURKAT cells. The total n ? 6 fatty acyl content was markedly reduced in phosphatidylinositol and phosphatidylcholine of cells grown in the presence of n ? 3 fatty acids (α-linolenic acid, eicosapentaenoic acid and docosahexaenoic acid). Conversely, in the presence of n ? 6 fatty acids (linoleic acid and arachidonic acid), the total n ? 3 fatty acyl content was reduced in all the phospholipids examined. In n ? 3 and n ? 6 polyunsaturated fatty acid (PUFA) modified JURKAT cells, the total n ? 9 monounsaturated fatty acyl content in the phospholipids were markedly reduced. Changing the fatty acyl composition of membrane phospholipids in the JURKAT cells appear to have no affect on the presentation of the T cell receptor/CD3 complex or the binding of anti-CD3 antibodies (OKT3) to the CD3 complex. However, the peak increase in [Ca2+]i and the prolonged sustained phase elicited by OKT3 activation were suppressed in n ? 3 and n ? 6 PUFA but not in n ? 9 monounsaturated fatty acid modified cells. In Ca2+ free medium, OKT3-induced transient increase in [Ca2+]i, representing Ca2+ release from the inositol 1,4,5-triphosphate-sensitive Ca2+ stores, were similar in control and UFA modified cells. Using Mn2+ entry as an index of plasma membrane Ca2+ permeability, the rate of fura-2 fluorescence quenching as a result of Mn2+ influx stimulated by OKT3 in n ? 9 monounsaturated fatty acid modified cells was similar to control cells, but the rates in n ? 3 and n ? 6 PUFA modified cells were significantly lower. These results suggest that receptor-mediated Ca2+ influx in JURKAT cells is sensitive to changes in the fatty acyl composition of membrane phospholipids and n ? 9 monounsaturated fatty acids appears to be important for the maintenance of a functional Ca2+ influx mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号