首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  2022年   1篇
  2010年   3篇
  2009年   2篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
  1986年   1篇
  1985年   1篇
  1980年   1篇
  1974年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Enzyme activities localized in the luminal compartment of the endoplasmic reticulum are integrated into the cellular metabolism by transmembrane fluxes of their substrates, products and/or cofactors. Most compounds involved are bulky, polar or even charged; hence, they cannot be expected to diffuse through lipid bilayers. Accordingly, transport processes investigated so far have been found protein-mediated. The selective and often rate-limiting transport processes greatly influence the activity, kinetic features and substrate specificity of the corresponding luminal enzymes. Therefore, the phenomenological characterization of endoplasmic reticulum transport contributes largely to the understanding of the metabolic functions of this organelle. Attempts to identify the transporter proteins have only been successful in a few cases, but recent development in molecular biology promises a better progress in this field.  相似文献   
2.
The UDP-sugar interconverting enzymes involved in UDP-GlcA metabolism are well described in eukaryotes but less is known in prokaryotes. Here we identify and characterize a gene (RsU4kpxs) from Ralstonia solanacearum str. GMI1000, which encodes a dual function enzyme not previously described. One activity is to decarboxylate UDP-glucuronic acid to UDP-β-l-threo-pentopyranosyl-4″-ulose in the presence of NAD+. The second activity converts UDP-β-l-threo-pentopyranosyl-4″-ulose and NADH to UDP-xylose and NAD+, albeit at a lower rate. Our data also suggest that following decarboxylation, there is stereospecific protonation at the C5 pro-R position. The identification of the R. solanacearum enzyme enables us to propose that the ancestral enzyme of UDP-xylose synthase and UDP-apiose/UDP-xylose synthase was diverged to two distinct enzymatic activities in early bacteria. This separation gave rise to the current UDP-xylose synthase in animal, fungus, and plant as well as to the plant Uaxs and bacterial ArnA and U4kpxs homologs.  相似文献   
3.
Arabinoxylans in crop plants are the major sugar components of the cell walls, and UDP-xylose is a key substrate in the biosynthesis of xylans. In this study, the six putative UDP-D-glucuronic acid decarboxylase genes from rice (Oryza sativa UDP-xylose synthase; OsUXS) were cloned. Except for the soluble form of OsUXS3 (GenBank Accession No. \AB079064), the remaining five OsUXS enzymes contain a putative membrane-bound region. The six OsUXS genes were classified into three types by phylogenetic analysis and were expressed during the development of rice seeds. The HPLC retention times of the enzyme products and NMR data, indicate that the recombinant OsUXS2 enzyme catalyzes the conversion of UDP-D-glucuronic acid to UDP-D-xylose. Interestingly, the reactions catalyzed by the recombinant OsUXS2 and OsUXS3 enzymes were inhibited by NADP+, and accelerated by NADPH. The catalytic activities of the recombinant OsUXS2 and OsUXS3 enzymes were strongly inhibited by UDP, UTP, TDP, and TTP. The expression levels of OsUXS genes changed in different manners during the development of rice seeds, suggesting that each corresponding OsUXS enzyme plays a significant role in rice seed development at a certain stage. In the present study, we report that the UXS2-type enzyme of rice is not only characterized for the first time but also show significant findings involved in the gene expression of OsUXSs.  相似文献   
4.
Changes in the activities of enzymes involved in UDP-sugar formation [UDP-glucose pyrophosphorylase (EC 2.7.7.9), sucrose synthase (EC 2.4.1.13) and UDP-glucuronic acid pyrophosphorylase (EC 2.7.7.44)], and interconversion [UDP-glucuse 4-epimerase (EC 5.1.3.2), UDP-glucose dehydrogenase (EC 1.1.1.22), UDP-glucuronic acid decarboxylase (EC 4.1.1.35) and UDP-xylose 4-epimerase (EC 5.1.3.5)] were investigated during the cell cycle in a synchronous culture of Catharanthus roseus (L.) G. Don. The specific activities of UDP-glucose pyrophosphorylase and UDP-glucose 4-epimerase increased in the G2 phase before the first cell division, and those of sucrose synthase, UDP-glucose dehydrogenase and UDP-glucuronic acid pyrophosphorylase increased in the G1 phase after the first cell division. However, during the cell cycle, UDP-glucuronic acid decarboxylase and UDP-xylose 4-epimerase did not change significantly in their specific activities. Changes in enzyme activities are discussed in relation to those reported previously for cell wall composition (S. Amino et al. 1984. Physiologia Plantarum 60: 326–332).  相似文献   
5.
An enzyme was detected in petal extracts of Melandrium album which catalysed the transfer of the xylose moiety of UDP-xylose to the 7-hydroxyl group of isovitexin. Genetical analysis revealed that the presence of the dominant allele gx was necessary for enzymic activity. This activity was independent of the residual genetic background. Xylosyltransferase activity is also present in extracts of gGgx plants, in which the product of the enzyme is not detectable. Maximal activity was found between pH 7·0 and 7·5; MnCl2 inhibited this transfer. The enzyme had an ‘apparent Km' value of 1·0 mM for UDP-xylose and of O·04 mM for isovitexin.  相似文献   
6.
The gene cluster of calicheamicin contains calS9, which encodes UDP-GlcA decarboxylase that converts UDP-GlcA to UDP-xylose. calS9 was cloned in pET32a(+) and expressed in Escherichia coli BL21 (DE3) to characterize its putative function. The reaction product was analyzed by high-performance liquid chromatography (HPLC) and electrospray ionization-mass spectrometry. The deoxysugar biosynthesis of Streptomyces sp. KCTC 0041BP was inactivated by gene replacement to generate Streptomyces sp. GerSM2 mutant, which was unable to produce dihydrochalcomycin. calS7, calS8, and calS9 UDP-xylose biosynthetic genes were cloned in an integrative plasmid pSET152 to generate pBPDS, which was heterologously expressed in Streptomyces sp. GerSM2. Finally, novel glycosylated product, 5-O-xylosyl-chalconolide derivative, in the conjugal transformants was isolated and analyzed by HPLC and liquid chromatography–mass spectrometry.  相似文献   
7.
Plants use UDP-arabinofuranose (UDP-Araf) to donate Araf residues in the biosynthesis of Araf-containing complex carbohydrates. UDP-Araf itself is formed from UDP-arabinopyranose (UDP-Arap) by UDP-arabinopyranose mutase (UAM). However, the mechanism by which this enzyme catalyzes the interconversion of UDP-Arap and UDP-Araf has not been determined. To gain insight into this reaction, functionally recombinant rUAMs were reacted with UDP-Glc or UDP-Araf. The glycosylated recombinant UAMs were fragmented with trypsin, and the glycopeptides formed were then identified and sequenced by LC-MS/MS. The results of these experiments, together with site-directed mutagenesis studies, suggest that in functional UAMs an arginyl residue is reversibly glycosylated with a single glycosyl residue, and that this residue is required for mutase activity. We also provide evidence that a DXD motif is required for catalytic activity.  相似文献   
8.
Pattathil S  Harper AD  Bar-Peled M 《Planta》2005,221(4):538-548
UDP-xylose (UDP-Xyl) is a sugar donor for the synthesis of glycoproteins, polysaccharides, various metabolites, and oligosaccharides in plants, vertebrates, and fungi. In plants, the biosynthesis of UDP-Xyl from UDP-glucuronic acid (UDP-GlcA) appears to be catalyzed by numerous UDP-glucuronic acid decarboxylase (Uxs) isoforms. For example, six Uxs isoforms in Arabidopsis thaliana (L.) and four in rice have been identified. However, the reason/s for the existence of several isoforms that are necessary for the synthesis of UDP-Xyl remains unknown. Here, we describe a Uxs isoform in Arabidopsis, AtUXS2, encoding an integral membrane protein that appears to be localized to the Golgi apparatus. The enzyme is a dimer and has distinct properties. Unlike the UXS3 isoform, which is shown here to be a soluble protein, the UXS2 isoform is membrane bound. The characteristics of the membrane-bound AtUxs2 and cytosolic AtUxs3 support the hypothesis that unique UDP-GlcA-DCs possessing distinct sub-cellular localizations can spatially regulate specific xylosylation events in plant cells.  相似文献   
9.
10.
M. Teusch 《Planta》1986,169(4):559-563
Petals of genetically defined lines of Matthiola incana R.Br. contain a glycosyltransferase which catalyzes the transfer of the xylosyl moiety of uridine 5-diphosphate-xylose to the glucose of cyanidin 3-glucoside. The enzyme also uses 3-glucosides of pelargonidin and delphinidin, cyanidin 3-(p-coumaroyl)-glucoside and 3-(caffeoyl)-glucoside as substrates. The xylosyltransferase exhibits a pH optimum of 6.5. The enzyme activity depends on the stage of bud and flower development. Accumulation of cyanidin 3-glucoside during flower development is correlated with xylosyltransferase activity.Abbreviations HPLC high-performance liquid chromatography - UDP uridine 5-diphosphate  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号