首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2013年   2篇
  2011年   1篇
  2007年   1篇
  2004年   2篇
  2000年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
We developed a method based on interactive B-spline solids for estimating and visualizing biomechanically important parameters for animal body segments. Although the method is most useful for assessing the importance of unknowns in extinct animals, such as body contours, muscle bulk, or inertial parameters, it is also useful for non-invasive measurement of segmental dimensions in extant animals. Points measured directly from bodies or skeletons are digitized and visualized on a computer, and then a B-spline solid is fitted to enclose these points, allowing quantification of segment dimensions. The method is computationally fast enough so that software implementations can interactively deform the shape of body segments (by warping the solid) or adjust the shape quantitatively (e.g., expanding the solid boundary by some percentage or a specific distance beyond measured skeletal coordinates). As the shape changes, the resulting changes in segment mass, center of mass (CM), and moments of inertia can be recomputed immediately. Volumes of reduced or increased density can be embedded to represent lungs, bones, or other structures within the body. The method was validated by reconstructing an ostrich body from a fleshed and defleshed carcass and comparing the estimated dimensions to empirically measured values from the original carcass. We then used the method to calculate the segmental masses, centers of mass, and moments of inertia for an adult Tyrannosaurus rex, with measurements taken directly from a complete skeleton. We compare these results to other estimates, using the model to compute the sensitivities of unknown parameter values based upon 30 different combinations of trunk, lung and air sac, and hindlimb dimensions. The conclusion that T. rex was not an exceptionally fast runner remains strongly supported by our models-the main area of ambiguity for estimating running ability seems to be estimating fascicle lengths, not body dimensions. Additionally, the craniad position of the CM in all of our models reinforces the notion that T. rex did not stand or move with extremely columnar, elephantine limbs. It required some flexion in the limbs to stand still, but how much flexion depends directly on where its CM is assumed to lie. Finally we used our model to test an unsolved problem in dinosaur biomechanics: how fast a huge biped like T. rex could turn. Depending on the assumptions, our whole body model integrated with a musculoskeletal model estimates that turning 45 degrees on one leg could be achieved slowly, in about 1-2s.  相似文献   
2.
Identifying tradeoffs between hunting and scavenging in an ecological context is important for understanding predatory guilds. In the past century, the feeding strategy of one of the largest and best-known terrestrial carnivores, Tyrannosaurus rex, has been the subject of much debate: was it an active predator or an obligate scavenger? Here we look at the feasibility of an adult T. rex being an obligate scavenger in the environmental conditions of Late Cretaceous North America, given the size distributions of sympatric herbivorous dinosaurs and likely competition with more abundant small-bodied theropods. We predict that nearly 50 per cent of herbivores would have been within a 55–85 kg range, and calculate based on expected encounter rates that carcasses from these individuals would have been quickly consumed by smaller theropods. Larger carcasses would have been very rare and heavily competed for, making them an unreliable food source. The potential carcass search rates of smaller theropods are predicted to be 14–60 times that of an adult T. rex. Our results suggest that T. rex and other extremely large carnivorous dinosaurs would have been unable to compete as obligate scavengers and would have primarily hunted large vertebrate prey, similar to many large mammalian carnivores in modern-day ecosystems.  相似文献   
3.
4.
The feeding behavior of the theropod dinosaur Tyrannosaurus rex is investigated through analysis of two variables that are critical to successful predation, bite force and prey body mass, as they scale with the size of the predator. These size-related variables have important deterministic effects on the predator’s feeding strategy, through their effects on lethal capacity and choice of prey. Bite force data compiled for extant predators (crocodylians, carnivorans, chelonians and squamates) are used to establish a relationship between bite force and body mass among extant predators. These data are used to estimate the maximum potential bite force of T. rex, which is between about 183,000 and 235,000 N for a bilateral bite. The relationship between maximum prey body mass and predator body mass among the same living vertebrates is used to infer the likely maximum size of prey taken by T. rex in the Late Cretaceous. This makes it possible to arrive at a more rigorous assessment of the role of T. rex as an active predator and/or scavenger than has hitherto been possible. The results of this analysis show that adult Triceratops horridus fall well within the size range of potential prey that are predicted to be available to a solitary, predaceous T. rex. This analysis establishes boundary conditions for possible predator/prey relationships among other dinosaurs, as well as between these two taxa.  相似文献   
5.
The tooth taxon Aublysodon mirandus was reinstated following the collection of nondenticulate tyrannosaurid premaxillary teeth from late Maastrichtian deposits in western North America. A small skull from the Hell Creek Formation of Montana (the 'Jordan theropod', LACM 28471), that was associated with a nondenticulate premaxillary tooth, was referred to Aublysodon and the diagnosis was revised to include cranial bones. However, the 'premaxillary' tooth of the specimen is actually a maxillary tooth. The small size of Aublysodon crowns, and evidence that some denticles develop late in growth in theropods, indicates that the nondenticulate condition represents immaturity. Therefore, Aublysodon is a nomen dubium. The Jordan theropod was recently designated as the type specimen of Stygivenator molnari . A tyrannosaurid from the Hell Creek Formation of Montana (LACM 23845) was first referred to Albertosaurus cf. A. lancensis and then later became the type specimen of Dinotyrannus megagracilis . On the basis of shared derived characters and a quantitative reconstruction of the growth series of Tyrannosaurus rex , the type specimens of S. molnari and D. megagracilis are juvenile and subadult specimens of T. rex , respectively. There is currently evidence for only one tyrannosaurid species in the late Maastrichtian of western North America: T. rex .  © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society , 2004, 142 , 479–523.  相似文献   
6.
Using an inverse dynamics biomechanical analysis that was previously validated for extant bipeds, I calculated the minimum amount of actively contracting hindlimb extensor muscle that would have been needed for rapid bipedal running in several extinct dinosaur taxa. I analyzed models of nine theropod dinosaurs (including birds) covering over five orders of magnitude in size. My results uphold previous findings that large theropods such as Tyrannosaurus could not run very quickly, whereas smaller theropods (including some extinct birds) were adept runners. Furthermore, my results strengthen the contention that many nonavian theropods, especially larger individuals, used fairly upright limb orientations, which would have reduced required muscular force, and hence muscle mass. Additional sensitivity analysis of muscle fascicle lengths, moment arms, and limb orientation supports these conclusions and points out directions for future research on the musculoskeletal limits on running ability. Although ankle extensor muscle support is shown to have been important for all taxa, the ability of hip extensor muscles to support the body appears to be a crucial limit for running capacity in larger taxa. I discuss what speeds were possible for different theropod dinosaurs, and how running ability evolved in an inverse relationship to body size in archosaurs.  相似文献   
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号