首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2018年   1篇
  2014年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2006年   1篇
  1982年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
We describe a strategy for the rapid selection of mutant aminoacyl-tRNA synthetases (aaRS) with specificity for a novel amino acid based on fluorescence-activated cell sorting of transformed Escherichia coli using as reporter the enhanced green fluorescent protein (eGFP) whose gene carries an amber stop codon (TAG) at a permissive site upstream of the fluorophore. To this end, a one-plasmid expression system was developed encoding an inducible modified Methanocaldococcus jannaschii (Mj) tyrosyl-tRNA synthetase, the orthogonal cognate suppressor tRNA, and eGFPUAG in an individually regulatable fashion. Using this system a previously described aaRS with specificity for O-methyl-L-tyrosine (MeTyr) was engineered for 10-fold improved incorporation of the foreign amino acid by selection from a mutant library, prepared by error-prone as well as focused random mutagenesis, for MeTyr-dependent eGFP fluorescence. Applying alternating cycles of positive and negative fluorescence-activated bacterial cell sorting in the presence or in the absence, respectively, of the foreign amino acid was crucial to select for high specificity of MeTyr incorporation. The optimized synthetase was used for the preparative expression of a modified uvGFP carrying MeTyr at position 66 as part of its fluorophore. This biosynthetic protein showed quantitative incorporation of the non-natural amino acid, as determined by mass spectrometry, and it revealed a unique emission spectrum due to the altered chemical structure of its fluorophore. Our combined genetic/selection system offers advantages over earlier approaches that relied wholly or in part on antibiotic selection schemes, and it should be generally useful for the engineering and optimization of orthogonal aaRS/tRNA pairs to incorporate non-natural amino acids into recombinant proteins.  相似文献   
2.
Aminoacyl-tRNA-synthetases are crucial enzymes for initiation step of translation. Possessing editing activity, they protect living cells from misincorporation of non-cognate and non-proteinogenic amino acids into proteins. Tyrosyl-tRNA synthetase (TyrRS) does not have such editing properties, but it shares weak stereospecificity in recognition of d-/l-tyrosine (Tyr). Nevertheless, an additional enzyme, d-aminoacyl-tRNA-deacylase (DTD), exists to overcome these deficiencies. The precise catalytic role of hydroxyl groups of the tRNATyr A76 in the catalysis by TyrRS and DTD remained unknown. To address this issue, [32P]-labeled tRNATyr substrates have been tested in aminoacylation and deacylation assays. TyrRS demonstrates similar activity in charging the 2′ and 3′-OH groups of A76 with l-Tyr. This synthetase can effectively use both OH groups as primary sites for aminoacylation with l-Tyr, but demonstrates severe preference toward 2′-OH, in charging with d-Tyr. In both cases, the catalysis is not substrate-assisted: neither the 2′-OH nor the 3′-OH group assists catalysis. In contrast, DTD catalyzes deacylation of d-Tyr-tRNATyr specifically from the 3′-OH group, while the 2′-OH assists in this hydrolysis.  相似文献   
3.
Tyrosyl-tRNA synthetase from Bacillus stearothermophilus is a dimeric molecule of approximately 90,000 Mr. The crystal structure originally reported by Irwin et al. (1976) has been re-interpreted using a new density-modification technique. The reinterpretation is confirmed by the complete amino acid sequence (D. Barker & (G. Winter, personal communication). The structure consists of an amino-terminal αβ domain, a domain containing five α-helices, and a region of 99 amino acids at the carboxyl terminus, which appears to be disordered. The re-interpretation reveals two new α-helices in the αβ domain, and some changes in chain connections. The strands of the β-sheet are in the order A, F, E, B, C, D, with A antiparallel to the others. The arrangement of strands B to F is topologically identical to arrangements found in many other proteins, including the first five strands of the sheet in the NAD-binding domain of the dehydrogenases. Strands B, C, D form a mononucleotide-binding fold.In the complex with tyrosyl adenylate (Rubin & Blow, 1981), an intermediate in the reaction catalysed by the enzyme, the adenine lies near the carboxyl-terminal end of strand F of the β-sheet, with the ribose between the ends of strands B and E. This is similar to the nicotinamide position in dehydrogenases. The tyrosine moiety occupies a pocket at one side of the sheet, close to strands B and C. This tyrosine orientation is quite different from any part of the coenzyme in dehydrogenases. The ends of strands C and D of the sheet are buried, and binding of a nucleotide to the mononucleotide-binding fold formed by strands B, C, D would require a substantial structural change.  相似文献   
4.
Pyrrolysyl-tRNA synthetase (PylRS), an aminoacyl-tRNA synthetase (aaRS) recently found in some methanogenic archaea and bacteria, recognizes an unusually large lysine derivative, l-pyrrolysine, as the substrate, and attaches it to the cognate tRNA (tRNAPyl). The PylRS-tRNAPyl pair interacts with none of the endogenous aaRS-tRNA pairs in Escherichia coli, and thus can be used as a novel aaRS-tRNA pair for genetic code expansion. The crystal structures of the Methanosarcina mazei PylRS revealed that it has a unique, large pocket for amino acid binding, and the wild type M. mazei PylRS recognizes the natural lysine derivative as well as many lysine analogs, including N?-(tert-butoxycarbonyl)-l-lysine (Boc-lysine), with diverse side chain sizes and structures. Moreover, the PylRS only loosely recognizes the α-amino group of the substrate, whereas most aaRSs, including the structurally and genetically related phenylalanyl-tRNA synthetase (PheRS), strictly recognize the main chain groups of the substrate. We report here that wild type PylRS can recognize substrates with a variety of main-chain α-groups: α-hydroxyacid, non-α-amino-carboxylic acid, Nα-methyl-amino acid, and d-amino acid, each with the same side chain as that of Boc-lysine. In contrast, PheRS recognizes none of these amino acid analogs. By expressing the wild type PylRS and its cognate tRNAPyl in E. coli in the presence of the α-hydroxyacid analog of Boc-lysine (Boc-LysOH), the amber codon (UAG) was recoded successfully as Boc-LysOH, and thus an ester bond was site-specifically incorporated into a protein molecule. This PylRS-tRNAPyl pair is expected to expand the backbone diversity of protein molecules produced by both in vivo and in vitro ribosomal translation.  相似文献   
5.
Orthogonal aminoacyl‐tRNA synthetase/tRNA pairs from archaea have been evolved to facilitate site specific in vivo incorporation of unnatural amino acids into proteins in Escherichia coli. Using this approach, unnatural amino acids have been successfully incorporated with high translational efficiency and fidelity. In this study, CHARMM‐based molecular docking and free energy calculations were used to evaluate rational design of specific protein–ligand interactions for aminoacyl‐tRNA synthetases. A series of novel unnatural amino acid ligands were docked into the p‐benzoyl‐L ‐phenylalanine tRNA synthetase, which revealed that the binding pocket of the enzyme does not provide sufficient space for significantly larger ligands. Specific binding site residues were mutated to alanine to create additional space to accommodate larger target ligands, and then mutations were introduced to improve binding free energy. This approach was used to redesign binding sites for several different target ligands, which were then tested against the standard 20 amino acids to verify target specificity. Only the synthetase designed to bind Man‐α‐O‐Tyr was predicted to be sufficiently selective for the target ligand and also thermodynamically stable. Our study suggests that extensive redesign of the tRNA synthatase binding pocket for large bulky ligands may be quite thermodynamically unfavorable. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
6.
Tyrosyl-tRNA synthetase (TyrRS) catalyzes the tyrosylation of tRNA(Tyr) in a two-step reaction. TyrRS has the "HIGH" and "KMSKS" motifs, which play essential roles in the formation of the tyrosyl-adenylate from tyrosine and ATP. Here, we determined the crystal structures of Archaeoglobus fulgidus and Pyrococcus horikoshii TyrRSs in the l-tyrosine-bound form at 1.8A and 2.2A resolutions, respectively, and that of Aeropyrum pernix TyrRS in the substrate-free form at 2.2 A. The conformation of the KMSKS motif differs among the three TyrRSs. In the A.pernix TyrRS, the KMSKS loop conformation corresponds to the ATP-bound "closed" form. In contrast, the KMSKS loop of the P.horikoshii TyrRS forms a novel 3(10) helix, which appears to correspond to the "semi-closed" form. This conformation enlarges the entrance to the tyrosine-binding pocket, which facilitates the pyrophosphate ion release after the tyrosyl-adenylate formation, and probably is involved in the initial tRNA binding. The KMSSS loop of the A.fulgidus TyrRS is somewhat farther from the active site and is stabilized by hydrogen bonds. Based on the three structures, possible structural changes of the KMSKS motif during the tyrosine activation reaction are discussed. We suggest that the insertion sequence just before the KMSKS motif, which exists in some archaeal species, enhances the binding affinity of the TyrRS for its cognate tRNA. In addition, a non-proline cis peptide bond, which is involved in the tRNA binding, is conserved among the archaeal TyrRSs.  相似文献   
7.
The single tyrosyl-tRNA synthetase (TyrRS) gene in trypanosomatid genomes codes for a protein that is twice the length of TyrRS from virtually all other organisms. Each half of the double-length TyrRS contains a catalytic domain and an anticodon-binding domain; however, the two halves retain only 17% sequence identity to each other. The structural and functional consequences of this duplication and divergence are unclear. TyrRS normally forms a homodimer in which the active site of one monomer pairs with the anticodon-binding domain from the other. However, crystal structures of Leishmania major TyrRS show that, instead, the two halves of a single molecule form a pseudo-dimer resembling the canonical TyrRS dimer. Curiously, the C-terminal copy of the catalytic domain has lost the catalytically important HIGH and KMSKS motifs characteristic of class I aminoacyl-tRNA synthetases. Thus, the pseudo-dimer contains only one functional active site (contributed by the N-terminal half) and only one functional anticodon recognition site (contributed by the C-terminal half). Despite biochemical evidence for negative cooperativity between the two active sites of the usual TyrRS homodimer, previous structures have captured a crystallographically-imposed symmetric state. As the L. major TyrRS pseudo-dimer is inherently asymmetric, conformational variations observed near the active site may be relevant to understanding how the state of a single active site is communicated across the dimer interface. Furthermore, substantial differences between trypanosomal TyrRS and human homologs are promising for the design of inhibitors that selectively target the parasite enzyme.  相似文献   
8.
Cell signaling pathways are essentially organized through the distribution of various types of binding domains in signaling proteins, with each domain binding to specific target molecules. Although identification of these targets is crucial for mapping the pathways, affinity-based or copurification methods are insufficient to distinguish between direct and indirect interactions in a cellular context. In the present study, we developed another approach involving the genetic encoding of a photo-crosslinkable amino acid. p-Trifluoromethyl-diazirinyl-l-phenylalanine was thus incorporated at a defined site in the Src homology 2 (SH2) domain of the adaptor protein GRB2 in human embryonic kidney cells. These cells were exposed to 365-nm light after an epidermal growth factor stimulus, and the crosslinkable GRB2-SH2 domain exclusively formed covalent bonds with directly interacting proteins. Proteomic mass spectrometry analysis identified these direct binders of GRB2-SH2 separately from the proteins noncovalently bound to the Src homology 3 domains of GRB2. In addition to two signaling-associated proteins (GIT1 and AF6), the heterogeneous nuclear ribonucleoproteins F, H1, and H2 were thus identified as novel direct binders. The results revealed a connection between the cell signaling protein and the nuclear machinery involved in mRNA processing, and demonstrated the usefulness of genetically encoded photo-crosslinkers for mapping protein-protein interactions in cells.  相似文献   
9.
3-Arylfuran-2(5H)-one, a novel antibacterial pharmacophore targeting tyrosyl-tRNA synthetase (TyrRS), was hybridized with the clinically used fluoroquinolones to give a series of novel multi-target antimicrobial agents. Thus, twenty seven 3-arylfuran-2(5H)-one-fluoroquinolone hybrids were synthesized and evaluated for their antimicrobial activities. Some of the hybrids exhibited merits from both parents, displaying a broad spectrum of activity against resistant strains including both Gram-negative and Gram-positive bacteria. The most potent compound (11) in antibacterial assay shows MIC50 of 0.11 μg/mL against Multiple drug resistant Escherichia coli, being about 51-fold more potent than ciprofloxacin. The enzyme assays reveal that 11 is a potent multi-target inhibitor with IC50 of 1.15 ± 0.07 μM against DNA gyrase and 0.12 ± 0.04 μM against TyrRS, respectively. Its excellent inhibitory activities against isolated enzymes and intact cells strongly suggest that 11 deserves to further research as a novel antibiotic.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号