首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2000年   1篇
排序方式: 共有16条查询结果,搜索用时 671 毫秒
1.

An efficient entry to nucleoside 3′-H-phosphonoselenoate monoesters via phosphinate intermediates was developed. It involves a reaction of suitably protected nucleosides with triethylammonium phosphinate in the presence of pivaloyl chloride, followed by selenization of the intermediate nucleoside phosphinates with triphenylphosphine selenide, to produce the corresponding nucleoside H-phosphonoselenoates in 86–92% yields.  相似文献   
2.
Direct reaction of copper(I) chloride with triphenylphosphine (tpp) in molar ratio 2:3 and 1:3, results in the formation of the [(tpp)Cu(μ2-Cl)2Cu(tpp)2] (1) and {[CuCl(tpp)3]·(CH3CN)} (2) complexes. The complexes have been characterized by melting point, FT-IR, UV-Vis spectroscopic data and X-ray crystallography. Complex 1 is di-nuclear. Two μ2-Cl atoms bridge two copper(I) ions with tetrahedral and trigonal geometry respectively. The short copper-copper bond distance of 2.9039(6) ? in case of 1 indicates d10-d10 interaction between metal centers. Thus, our studies were extended here in the determination of the quasi-aromaticity, which results in strong Cu-Cu interactions, using the computational method of nucleus-independent chemical shifts (NICS). The NICS calculated at the inner region of the Cu2Cl2P3 core in complex 1 is shielded up to −6.05 ppm. Complex 2 is mono-nuclear where three phosphorus and one chloride atoms form a tetrahedron around the copper(I) ion. Photolysis of both complexes 1 and 2, results in the formation of triphenylphosphine oxide.The complexes 1 and 2, were tested for their in vitro cytotoxic activity against leiomyosarcoma cells (LMS) and human breast adenocarcinoma cells (MCF-7). The type of LMS cell death caused by the complexes was also evaluated by use of a flow cytometry assay. The results show that at concentration of 5 μΜ of complexes 1 and 2, 34.1% (1) and 19.6 (2)% of LMS cells undergo programmed cell death (apoptosis), while at 10 μΜ, 80.4% (1) and 65.2% (2) of LMS cells undergo apoptosis. The light sensitivity of the complex is discussed in relation with the biological activity.  相似文献   
3.
Six copper(I) complexes {[Cu2(L1)(PPh3)2I2] · 2CH2Cl2}n (1), {[Cu2(L2)(PPh3)2]BF4}n (2), [Cu2(L3)(PPh3)4I2] · 2CH2Cl2 (3), [Cu2(L4)(PPh3)4I2] (4), [Cu2(L5)(PPh3)2I2] (5) and [Cu2(L6)(PPh3)2I2] (6) have been prepared by reactions of bis(schiff base) ligands: pyridine-4-carbaldehyde azine (L1), 1,2-bis(4′-pyridylmethyleneamino)ethane (L2), pyridine-3-carbaldehyde azine (L3), 1,2-bis(3′-pyridylmethyleneamino)ethane (L4), pyridine-2-carbaldehyde azine (L5), 1,2-bis(2′-pyridylmethyleneamino)ethane (L6) with PPh3 and copper(I) salt, respectively. Ligand L1 or L2 links (PPh3)2Cu2(μ-I)2 units to form an infinite coordination polymer chain. Ligand 3 or 4 acts as a monodentate ligand to coordinate two copper(I) atoms yielding a dimer. Ligand 5 or 6 chelates two copper(I) atoms using pyridyl nitrogen and imine nitrogen to form a dimer. Complexes 1-4 exhibit photoluminescence in the solid state at room temperature. The emission has been attributed to be intraligand π-π* transition mixed with MLCT characters.  相似文献   
4.
Li S  Wang H  Xian M  Whorton AR 《Nitric oxide》2012,26(1):20-26
Regulation of protein function by S-nitrosation of critical cysteines is known to be an important mechanism for nitric oxide signaling. Evidence for this comes from several different experimental approaches including the ascorbate-based biotin switch method. However technical problems with specificity and sensitivity of ascorbate reduction of S-nitrosothiols limit its usefulness and reliability. In the current study we report the use of triphenylphosphine ester derivatives to selectively reduce SNO bonds in proteins. After triphenylphosphine ester reduction, thiols were tagged with biotin or fluorescently labeled maleimide reagents. Importantly we demonstrate that these compounds are specific reductants of SNO in complex biological samples and do not reduce protein disulfides or protein thiols modified by hydrogen peroxide. Reduction proceeds efficiently in cell extracts and in whole fixed cells. Application of this approach allowed us to demonstrate S-nitrosation of specific cellular proteins, label S-nitrosoproteins in whole fixed cells (especially the nuclear compartment) and demonstrate S-nitrosoprotein formation in cells expressing inducible nitric oxide synthase.  相似文献   
5.
Zero-valent nickel compounds are organometallic chemicals that are used in synthetic applications and may also occur as intermediates in nickel-catalyzed hydrogenation reactions used in food processing. Few studies have been performed on their possible genotoxic actions. We have tested two commercially available examples of this class of compounds. Solubility and stability were examined. Mutagenicity testing did not confirm a previous report that bis(1,5-cyclooctadiene)nickel is positive in the Ames assay. No stimulation of lipid peroxidation was observed in studies of bovine erythrocytes exposed in vitro. Our results do not indicate that zero-valent nickel compounds have genotoxic effects.  相似文献   
6.
Two mononuclear neutral copper(I) complexes, Cu(L1)PPh3 (1), Cu(L2)(PPh3)2 (2) ([L1] = [{N(C6H3iPr2-2,6)C(H)}2CPh]; [L2] = [{N(C6H5)C(H)}2CPh]) have been synthesized and structurally characterized by X-ray crystallography. In complex 1, the copper(I) atom is in a distorted three-coordinate trigonal planar environment, whereas in complex 2 with the less sterically hindered β-dialdiminato ligand, the copper(I) atom is the centre of a four-coordinate distorted tetrahedron. At room temperature complexes 1 and 2 in a film of PMMA exhibit green emission at 543 and 549 nm with lifetimes of 5.28 and 5.32 ns, respectively.  相似文献   
7.
The reactions of trans-[(PPh3)2M(CO)Cl] (M = Rh and Ir) with benzildiimine (H2BDI = 2) derived from benzil-bis(trimethylsilyl)diimine (Si2BDI) (1) in a 1:2 and 1:1 molar ratio afforded the cationic bis-benzildiiminato complexes [Rh(PPh3)2(HBDI)2]Cl (3) and the mono-benzildiimine complex [Ir(PPh3)2(CO)(H2BDI)]Cl (4), respectively. Both complexes are fully characterized using IR, FAB-MS, NMR spectroscopy and elemental analysis. The single crystal X-ray structure analysis reveals a distorted octahedral coordination geometry for the Rh(III) in 3 and a highly distorted square pyramidal geometry for Ir(I) in 4. In addition, the solid-state structure of Si2BDI is reported here for the first time showing the substituents highly twisted because of steric reasons.  相似文献   
8.
Reaction of [HgCl2(PPh3)2] with one equivalent of thiosalicylic acid (tsalH2, HSC6H4CO2H) and excess triethylamine, followed by recrystallisation from dichloromethane-diethyl ether gives the compound [Hg2(tsal)2(PPh3)2] (2). This has a bis(S,O)-chelated mercury centre with a nido-trigonal bipyramidal coodination, with the four oxygens of the two carboxylates also coordinated to a Hg(PPh3)2 moiety. When a reduced quantity of pyridine was used as the base a different crystalline product was isolated. This was characterised as [Hg2(tsal)2(PPh3)2][Hg(tsalH)2] (3), which contains the same [Hg2(tsal)2(PPh3)2] moiety found for 2, co-crystallised with a [Hg(tsalH)2]. The two mercury-thiosalicylate species are connected by means of O-H?O hydrogen bonding.  相似文献   
9.
A series of triphenylphosphine coordinated silver α,β-unsaturated carboxylates of type [Ag(O2CR)(PPh3)n: n = 1, R = CH3CHCH (2a), (CH3)2CCH (2b), CH3CH2CHCH (2c), CH3CH2CH2CHCH (2d), PhCHCH (2e), CH2CH (2f); n = 2, CH3CHCH (3a), (CH3)2CCH (3b), CH3CH2CHCH (3c), CH3CH2CH2CHCH (3d)] were prepared by reaction of relative silver carboxylates (1a-1f) with triphenylphosphine in chloroform. These complexes were obtained in high yields and characterized by elemental analysis, 1H NMR, 13C NMR, 31P NMR and IR spectroscopy. Thermal stability of the complexes has been determined by TG analysis. The molecular structure of [Ag((O2CCHC(CH3)2))(PPh3)2] (3b) shows that the senecioato ligand is chelated with silver atom and generate, a distorted tetrahedron.  相似文献   
10.
The title compound as its methyl glycoside was efficiently synthesized using a block synthesis approach. Halide-assisted glycosidations between 6-O-acetyl-2,3,4-tri-O-benzyl-alpha-D-glucopyranosyl iodide and ethyl 2-O-acetyl-4,6-di-O-benzyl-1-thio-alpha-D-mannopyranoside using triphenylphosphine oxide as promoter yielded, with complete alpha-selectivity, a disaccharide building block in high yield. The perbenzylated derivative of this proved to be an excellent donor affording 88% of the protected target tetrasaccharide in an NIS/AgOTf-promoted coupling to a known methyl dimannoside acceptor. Deprotection through catalytic hydrogenolysis then gave the target compound in 47% overall yield.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号