首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   1篇
  国内免费   1篇
  2023年   1篇
  2020年   1篇
  2016年   2篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   5篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
  1999年   3篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
排序方式: 共有59条查询结果,搜索用时 21 毫秒
1.
Cultures of dissociated brain cells from 15-day-old fetal mice were grown in the presence and absence of 20 or 50 nM triiodothyronine (T3), 30 or 300 nM cortisol, and 30 nM cortisol plus 50 nM T3 added to chemically defined media or in media supplemented with 15% serum from control and hypothyroid calves. The specific activities of five lysosomal enzymes--N-acetyl galactosaminidase, beta-glucuronidase, beta-galactosidase, cathepsin B, and dipeptidyl aminopeptidase I (DAP-I)--were higher in cells grown in calf serum than in cells grown in defined media. Of these enzymes, only DAP-I was elevated in activity when the cells were grown in hypothyroid calf serum instead of control calf serum. Elevation of DAP-I activity was reversed by addition of 20 nM T3 to hypothyroid calf serum. The enzymatic properties of DAP-I were similar whether the cells were grown in control or hypothyroid calf serum and were similar to those reported for human fibroblasts and the purified enzyme. When the cells were grown in defined media, cortisol decreased the activities of all lysosomal enzymes, with 300 nM cortisol being more effective than 30 nM cortisol. Addition of 50 nM T3 to 30 nM cortisol decreased DAP-I activity more than 30 nM cortisol alone, but 50 nM T3 alone in defined media did not alter DAP-I levels. The reduction of DAP-I activity in these cells by T3 required cortisol, unidentified components in serum, or both.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
2.
Summary To clarify the hormonal regulation of metamorphosis of the conger eel (Conger myriaster), changes in whole body concentrations of thyroid hormones, thyroxine (T4) and triiodothyronine (T3), and cortisol during metamorphosis were examined, as well as the changes in the histological activity of the thyroid gland. In larvae before metamorphosis, T4 and T3 levels were less than 5 and 0.15 ng·g-1 respectively. Levels of T4 increased to about 30 ng·g-1 during early metamorphosis, and decreased subsequently. Levels of T3 increased gradually in early metamorphosis, and then increased abruptly to about 2.0 ng·g-1 in late metamorphosis. Before metamorphosis, cortisol levels of the leptocephali less than 11 cm in total length were greater than 200 ng·g-1. Cortisol levels decreased rapidly in larger premetamorphic leptocephali, and low levels were maintained throughout the metamorphic period. Histological observation revealed an activation of the thyroid gland in early metamorphosis; thyroid follicle epithelial cells became columnar and their nuclei larger. Active uptake of colloid by these cells and intensive vascularization of the gland were also observed. By the end of metamorphosis, follicle epithelial cells became squamous, indicating a low level of glandular activity. These results suggest that thyroid hormone plays an important role in regulation of conger eel metamorphosis.Abbreviations AL anal length - TL total length - T 3 triiodothyronine - T 4 thyroxine  相似文献   
3.
Glycogen metabolism: a 13C-NMR study on the isolated perfused rat heart   总被引:1,自引:0,他引:1  
Glycogen synthesis from D-[1-13C]glucose was observed in the perfused rat heart by 13C-NMR spectroscopy at 62.9 MHz. The glycogenogenesis was stimulated by pretreatment of the animals with isoprenaline. Whereas in hearts from control rats the incorporation of D-[1-13C]glucose into the glycogen remained below the detection threshold, 5 min proton-decoupled 13C-NMR spectra revealed, in hearts from treated rats, a significant labelling of the glycogen within the first minutes of the perfusion and a further linear increase of the glycogen resonance for up to 25 min. This model was used to monitor the appearance of 13C-labelled lactate during ischemia.  相似文献   
4.
Triiodothyronine (T3) effects on the activity, rate of synthesis and mRNA content of the key lipogenic enzyme, fatty acid synthetase, were studied in differentiating ob17 preadipocytes cloned from ob/ob mouse epididymal adipose tissue. During differentiation in the presence of insulin, a 6–10-fold increase in both fatty acid synthetase specific activity and synthesis rate were reproducibly observed and occurred concomitantly. The relative synthesis rate exhibited a progressive elevation from 0.5% at confluence to a maximum level of 2% in the presence of insulin. The rate of the enzyme degradation determined by pulse-chase experiments was similar in differentiating cells and insulin-untreated cells of the same age (t12, 40–42 h). Furthermore, the increase in the enzyme synthesis rate was preceded by a progressively elevating amount of mRNA encoding for this protein as detected by translation in a reticulocyte lysate cell-free system. It is thus suggested that the increment in total and neosynthesized fatty acid synthetase in essentially due to an increased enzyme synthesis, reflecting an increased relative content of its specific mRNA. T3 included at a physiological concentration (1.5 nM) in the culture medium enhanced significantly both enzyme synthesis and its specific mRNA. The most important T3 effect was an acceleration of both processes, a stimulation of the mRNA level being detected as early as day 3 post-confluence and maximum at day 5 when the effect on the synthetase synthesis rate and activity began to be enhanced. This suggests that T3 would mainly affect fatty acid synthetase as a pretranslational level.  相似文献   
5.
In this work we have studied some hematological and biochemical parameters of peripheral blood, as well as some histological aspects of liver and spleen during chronic exposure (1, 6, and 8 months) to extremely low-frequency magnetic fields (ELF-MF). Balb/C mice were exposed to an experimental sinusoidal magnetic wavefield of 60 Hz with a 0.11-mT intensity, generated in a system of Helmholtz coils. The results have shown no ELF-MF–cancer relationship during our experimental exposure time. However, leukopenia, hemoglobin decrease, and liver and spleen weight increase were observed. The bioeffects described could be correlated with spleen hyperfunction, which could have been produced by chronic exposure to this ELF-MF.  相似文献   
6.
In this study we examined whether adult rat brain tissue (cerebral hemispheres) would under cold exposure respond with changes in the local metabolism and nuclear binding of thyroid hormones (T3, T4). Adult, control rats kept at 22°C and cold exposed (4°C, 20 h) rats were injected with trace of 125I-T4 or 125I-T3 returned to their respective environment and sacrificed four hours later. The radioactive hormonal forms were identified and quantified in the cytoplasmic and nuclear fractions. It was found that in cold exposed rats injected with 125I-T4, the total cytoplasmic radioactivity was higher than that of controls. This increase was not associated with 125I-T4 but it reflected an increase (88 %) in its deiodination product 125I-T3 (125I-T3 (T4)). Although total cytoplasmic 125I-T4 did not change, there was a decrease (28%) in its protein free cytoplasmic fraction. 125I-T3 (T4) and 125I-T4 bound to the nuclear fraction were found to decrease by 58 and 46% respectively. Cold exposed animals injected with 125I-T3 also showed an increase in cytoplasmic 125I-T3 (81%) and a decrease in 125I (40%) whereas 125I-T3 bound to the nuclear fraction decreased by 64%. These results indicate that cold exposure of rats decreases brain local T3 metabolism and nuclear binding while it does not effect local T4 metabolism.  相似文献   
7.
This study examined the effects of p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT), fasting and flight on thyroid hormones and corticosterone in Gambel's White-crowned Sparrows (Zonotrichia leucophrys gambelli). Female sparrows were dosed daily with either 5 mg p,p'-DDT per kg body mass or corn oil vehicle over 3 days. On the fifth day the sparrows were divided into 3 groups: (1) unstressed - non-stressed control sparrows; (2) fasted - sparrows fasted for intervals ranging from 20 min to 9 h; or (3) flown - sparrows flown in a wind tunnel for intervals between 20 min and 2.5 h while fasting. Half the sparrows from each group received DDT (DDT-dosed sparrows) and the other half corn oil vehicle only (vehicle sparrows). Trunk blood plasma was analyzed for thyroxine, triiodothyronine and corticosterone using radioimmunoassay. In the flown group, corticosterone was elevated (DDT-dosed 35.52 ng/ml, P < or = 0.05), and thyroxine was depressed (DDT-dosed 4.09 ng/ml, P < or = 0.05; vehicle 4.33 ng/ml, P < or = 0.05). Elevated corticosterone likely decreased thyroid hormone production through a negative feedback mechanism originating at the hypothalamus. Mean triiodothyronine concentrations did not differ among any of the test groups. Relative to time fasted and flown, thyroxine decreased in flown birds dosed with DDT (P < 0.001) and triiodothyronine decreased in fasted birds dosed with DDT (P = 0.004). The increased rate of hormone diminution may be a result of the ability of DDT to induce microsomal enzyme production.  相似文献   
8.
9.
Thyrotropin (TSH) and the gonadotropins; follitropin (FSH), lutropin (LH) and human chorionic gonadotropin (hCG) are a family of heterodimeric glycoprotein hormones. These hormones composed of two noncovalently linked subunits; a common α and a hormone specific β subunits. Assembly of the subunits is vital to the function of these hormones. However, genetic fusion of the α and β subunits of hFSH, hCG and hTSH resulted in active polypeptides. The glycoprotein hormone subunits contain one (TSH and LH) or two (α, FSHβ and hCGβ) asparagine-linked (N-linked) oligosaccharides. CGβ subunit is distinguished among the β subunits because of the presence of a carboxyl-terminal peptide (CTP) bearing four O-linked oligosaccharide chains. To examine the role of the oligosaccharide chains on the structure–function of glycoprotein hormones, chemical, enzymatic and site-directed mutagenesis were used. The results indicated that O-linked oligosaccharides play a minor role in receptor binding and signal transduction of the glycoprotein hormones. In contrast, the O-linked oligosaccharides are critical for in vivo half-life and bioactivity. Ligation of the CTP bearing four O-linked oligosaccharide sites to different proteins, resulted in enhancing the in vivo bioactivity and half-life of the proteins. The N-linked oligosaccharide chains have a minor role in receptor binding of glycoprotein hormones, but they are critical for bioactivity. Moreover, glycoprotein hormones lacking N-linked oligosaccharides behave as antagonists. In conclusion, the O-linked oligosaccharides are not important for in vitro bioactivity or receptor binding, but they play an important role in the in vivo bioactivity and half-life of the glycoprotein hormones. Addition of the O-linked oligosaccharide chains to the backbone of glycoprotein hormones could be an interesting strategy for designing long acting agonists of glycoprotein hormones. On the other hand, the N-linked oligosaccharides are not important for receptor binding, but they are critical for bioactivity of glycoprotein hormones. Deletion of the N-linked oligosaccharides resulted in the development of glycoprotein hormone antagonists. In the case of hTSH, development of an antagonist may offer a novel therapeutic strategy in the treatment of thyrotoxicosis caused by Graves' disease and TSH secreting pituitary adenoma.  相似文献   
10.
To investigate the iodothyronine role in liver responses to cold, we examined metabolic and oxidative mitochondrial changes in cold-exposed, T3-treated, and T4-treated rats, which exhibit different T4 serum levels. All treatments increased mitochondrial respiration which reached the highest and lowest values after T3 and cold treatment, respectively. The T3- and T4-induced changes agreed with the respective increases in Complex IV activities, while those elicited by cold were inconsistent with increased activities of respiratory complexes. Mitochondrial capacity to produce H2O2 was the highest in T3-treated rats, whereas it was similar in T4-treated and cold-exposed rats. The effects of respiratory inhibitors suggested that T3 and T4 mainly increase the mitochondrial content of autoxidizable electron carrier of Complex I and Complex III, respectively. The indices of oxidative modifications of proteins exhibited increases consistent with the treatment effects on H2O2 production. The increases in indices of lipid peroxidation were also dependent on changes in lipid composition. The increased protein damage in treatment groups was confirmed using immunoblotting analysis, which also showed oxidative damage in a 133 kDa fraction, which was not expressed in T3-treated rats. Antioxidant levels were not related to the extent of oxidative damage as only mitochondrial GSH levels decreased in T3-treated rats. Mitochondrial susceptibility to in vitro oxidative challenge and Ca2+-induced swelling was increased by all treatments, but was the highest in T3-treated rats. In the whole, our results indicate T3 as main responsible for the changes in the mitochondrial population associated with cold exposure. However, a significant role is also played by T4, which appears to acts mainly modulating T3 effects, but also inducing some effects different from the T3 ones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号