首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2020年   1篇
  2008年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
2.
Oligonucleotide chip-based assays can be a sample-thrifty, time-saving, routine tool for evaluation of chemical-induced DNA strand breaks. This article describes a novel approach using an oligonucleotide chip to determine photosensitizer-induced DNA single-strand breaks. Surface coverage of fluorophore-labeled oligonucleotides on silicon dioxide chip surfaces was determined on alkaline phosphatase digestion. Fluorescence maxima (at 520 nm) of the solutions were converted to molar concentrations of the fluorescein-modified oligonucleotide by interpolation from a predetermined standard linear calibration curve. The photosensitizing activity of chlorpromazine and triflupromazine toward DNA single-strand breaks was then studied at different drug doses and also as a function of photoirradiation time. Photoinduced single-strand breaks calculated using the method described here agreed with values predicted by theoretical extrapolation of the single-strand breaks obtained for plasmid DNAs from agarose gel electrophoresis, and thereby indirectly validated the chip-based assays. Under UV irradiation (93.6 kJ/m2) chlorpromazine (0.08 mM) was found to have significant photogenotoxicity. However, triflupromazine did not exhibit any (photo)genotoxicity over the concentration range studied (0.04–0.20 mM). The method developed will be useful for quantitative screening of drug genotoxicity in terms of induction of breaks in DNA.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号