首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  2019年   1篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
The ABO histo-blood group system is one of the most clinically important antigen families. As part of our overall goal to prepare the entire set of the A, B and H type I-VI antigens for a range of biochemical investigations, we report herein the synthesis of the type I and II antigens with a 7-octen-1-yl aglycone. This linker was chosen to facilitate not only the future conjugation of the antigens to a protein or solid support but also the synthesis of the H type I and II octyl glycosides for enzyme kinetic studies.  相似文献   
2.
A general strategy towards total synthesis of (-)-codonopsinine, (-)-codonopsine and codonopsinine analogues has been developed from (D)-tartaric acid via the intermediate (3S,4R)-1-methyl-2-oxo-5-(2,2,2-trichloroacetamido)pyrrolidinediacetate (7). α-amidoalkylation studies of 7 with electron rich benzene derivative 8a-g as C-nucleophiles afforded (aryl derivatives) 9a-g. The target compounds 1, 2 and 13c-g were readily obtained from 10a-g via Grignard addition to the homochiral lactam which was produced by deoxygenation using Lewis-acid followed by deacetylation. The synthesized compounds were loaded onto solid lipid nanoparticle formulations (SLNs) prepared by hot emulsification-ultrasonication technique using Compritol as solid lipid and Pluronic f68 as surfactant. SLNs were fully evaluated and the permeation of synthesized compound from SLNs was assayed against non-formulated compounds through dialysis membranes using Franz cell. The data indicated good physical characteristics of the prepared SLNs, sustaining of release profiles and significant improvement of permeation ability when compared to the non-formulated compounds. The antibacterial and antifungal activities of 1, 2 and 13c-g were determined by disc diffusion and microbroth dilution method to determine the minimum inhibitory concentrations (MIC) against seven microorganisms (Staphyloccus aureus, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Acinetobacter baumannii and Candida albicans). The most active compounds against the Gram positive S. aureus were 1, 13C, 13d, and 13g. Also, 13c, 13d, and 13e had antibacterial activity but not 13f against some Gram negative organisms (E. coli, and P. mirabilis). MIC concentrations against P. aeruginosa, and K. pneumoniae were?≥512?μg/ml, while that against A. baumannii was?≥128?μg/ml except for nanoformulae of 13e and 13f that were 16 and 64?μg/ml, respectively. No antifungal activity against Candida albicans was recorded for all compounds and their nanoformulae (MIC?>?1024?μg/ml). SLNs were found to decrease the MIC values for some of the compounds with no effect on the antifungal activity. In conclusion, we demonstrated a novel, straight-forward and economical procedure for the total synthesis of (-)-codonopsinine 1, (-)-codonopsine 2 and codonopsinine analogues 13c-g from simple and commercially available starting materials; d-tartaric acid; with antimicrobial activities against Gram positive and Gram-negative organisms that were improved by SLNs formulations.  相似文献   
3.
Zhang F  Vasella A 《Carbohydrate research》2007,342(17):2546-2556
Partially deuteriated 1,5,6,6-(2)H(4)-d-glucose and 1(I),1(II),5(I),5(II),6(I),6(I),6(II),6(II)-(2)H(8)-d-cellobiose were synthesized in high yields and on a large scale from d-glucose. (2)H enrichment at C-5 and C-6 of each glucopyranosyl unit in excess of 85% and 90%, respectively, was realized by (1)H-(2)H exchange in (2)H(2)O containing deuteriated Raney Ni. Nucleophilic addition of LiAlD(4) to 5,6,6-(2)H(3)-2,3,4,6-tetra-O-benzyl-d-gluconolactone led to a 98% (2)H enrichment at C-1. Deuteriated cellobiose is of interest as building block for the synthesis of a model compound of cellulose I.  相似文献   
4.
Chen L  Kong F 《Carbohydrate research》2002,337(15):1373-1380
A practical synthesis of beta-D-GlcA-(1-->3)-beta-D-Gal-(1-->3)-beta-D-Gal-(1-->4)-beta-D-Xyl-(1-->OMe) was achieved by coupling of methyl 2,3,4-tri-O-acetyl-alpha-D-glucopyranosyluronate trichloroacetimidate with a trisaccharide acceptor. The trisaccharide acceptor was obtained by condensation of 3-O-allyl-2,4,6-tri-O-benzoyl-beta-D-galactopyranosyl-(1-->3)-2,4,6-tri-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate with methyl 2,3-di-O-benzoyl-beta-D-xylopyranoside, followed by deallylation. The beta-(1-->3)-linked disaccharide was prepared readily with p-methoxyphenyl 3-O-allyl-2,4,6-tri-O-benzoyl-beta-D-galactopyranoside as the key synthon. The alpha-(1-->3)-linkage was formed in considerable amount with galactose mono- and disaccharide trichloroacetimidate donors with C-2 neighboring group participation.  相似文献   
5.
Carbohydrates carrying an aromatic aglycon are important natural products and thus key synthetic targets. However, due to the electron-withdrawing properties of aromatic rings, phenols are difficult to glycosylate. This review covers the most common carbohydrate donors used for aromatic O-glycosylation (anomeric acetates, halides, trichloroacetimidates and thioglycosides) as well as some less common donors. The scope of the review is to give practical examples of aromatic O-glycosylations and to offer guidelines for glycosylation of typical aromatic residues. Anomeric acetates or trichloroacetimidates, activated under acidic conditions, are preferred for electron rich aromatic aglycons, while glycosyl halides, activated using basic conditions, are preferred for electron deficient aromatic residues.  相似文献   
6.
The ABO histo-blood group antigens are best known for their important roles in solid organ and bone marrow transplantation as well as transfusion medicine. Here we report the synthesis of the ABO type III and IV antigens with a 7-octen-1-yl aglycone. Also described is an NMR study of the ABO type I to VI antigens, which were carried out to probe differences in overall conformation of the molecules. These NMR investigations showed very little difference in the 1H chemical shifts, as well as 1H–1H coupling constants, across all compounds, suggesting that these ABO subtypes adopt nearly identical conformations in solution.  相似文献   
7.
Glycosylation studies for the construction of 1,2-cis α-linkages with O-(2,3,5,6-tetra-O-benzyl-β-d-galactofuranosyl) trichloroacetimidate (1) and several acceptors, including d-mannosyl and l-rhamnosyl derivatives were performed. The reactions were conducted at low temperatures using CH2Cl2, Et2O, and acetonitrile as solvents. A non-participating solvent such as CH2Cl2 at −78 °C, favored the α-d-configuration. In contrast, acetonitrile strongly favored the β-d-configuration, whereas no selectivities were observed with Et2O. The use of thiophene as an additive did not enhance the α-d-selectivity as in the pyranose counterpart. Although selectivities strongly depended on the acceptor, trichloroacetimidate 1 constitutes a valuable donor for the synthesis of α-d-Galf-(1→2)-l-Rha and α-d-Galf-(1→6)-d-Man. As these motifs are present in pathogenic microorganisms, these procedures described here are useful for the straightforward synthesis of natural oligosaccharides.  相似文献   
8.
A first systematic synthesis of the glycan parts of the a-series gangliosides (GT1a, GD1a, and GM1) utilizing the newly developed N-Troc-protected GM3 and galactosaminyl building blocks is described. The key processes, including the assembly of the GM2 sequence and its conversion into the 3-hydroxy acceptor, were facilitated mainly by the high degree of participation and chemoselective cleavability of the Troc group in the galactosaminyl unit. Furthermore, the novel GM2 acceptor served as a good coupling partner during glycosylation with galactosyl, sialyl galactosyl, and disialyl galactosyl donors, successfully producing the GM1, GD1a, and GT1a glycans.  相似文献   
9.
We report here the synthesis of three chacotriose analogues, namely beta-L-fucopyranosyl-(1-->2)-[beta-L-fucopyranosyl-(1-->4)]-D-glucopyranose, beta-L-fucopyranosyl-(1-->2)-[beta-L-fucopyranosyl-(1-->4)]-d-galactopyranose, and alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L-rhamnopyranosyl-(1-->4)]-alpha-D-galactopyranose.  相似文献   
10.
The allyl glycoside beta-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-beta-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-alpha-D-Glcp (18) and the acetonyl glycoside of beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-beta-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-beta-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-alpha-D-Glcp (28) were synthesized as analogues of the lentinan heptaose repeating unit. 4,6-O-Benzylidenated monosaccharide donor 3 and 4,6-O-benzylidenated tetrasaccharide acceptor 14 were used to ensure the beta-linkage in the synthesis of 18, while 4,6-O-benzylidenated disaccharide acceptor 20, and 4,6-O-benzylidenated disaccharide donors 21 and 24 were used to ensure the beta-linkage in the synthesis of 28.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号