首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3340篇
  免费   123篇
  国内免费   44篇
  2024年   2篇
  2023年   28篇
  2022年   41篇
  2021年   43篇
  2020年   54篇
  2019年   71篇
  2018年   73篇
  2017年   51篇
  2016年   56篇
  2015年   75篇
  2014年   152篇
  2013年   212篇
  2012年   90篇
  2011年   117篇
  2010年   77篇
  2009年   110篇
  2008年   135篇
  2007年   176篇
  2006年   161篇
  2005年   138篇
  2004年   164篇
  2003年   165篇
  2002年   125篇
  2001年   72篇
  2000年   77篇
  1999年   83篇
  1998年   83篇
  1997年   89篇
  1996年   90篇
  1995年   83篇
  1994年   83篇
  1993年   63篇
  1992年   67篇
  1991年   72篇
  1990年   54篇
  1989年   53篇
  1988年   46篇
  1987年   45篇
  1986年   33篇
  1985年   25篇
  1984年   16篇
  1983年   7篇
  1982年   21篇
  1981年   15篇
  1980年   3篇
  1979年   5篇
  1978年   1篇
  1977年   3篇
  1976年   2篇
排序方式: 共有3507条查询结果,搜索用时 15 毫秒
1.
2.
Inflammatory responses mediated by activated microglia play a pivotal role in the pathogenesis of human immunodeficiency virus type 1 (HIV-1)-associated neurocognitive disorders. Studies on identification of specific targets to control microglia activation and resultant neurotoxic activity are imperative. Increasing evidence indicate that voltage-gated K+ (Kv) channels are involved in the regulation of microglia functionality. In this study, we investigated Kv1.3 channels in the regulation of neurotoxic activity mediated by HIV-1 glycoprotein 120 (gp120)-stimulated rat microglia. Our results showed treatment of microglia with gp120 increased the expression levels of Kv1.3 mRNA and protein. In parallel, whole-cell patch-clamp studies revealed that gp120 enhanced microglia Kv1.3 current, which was blocked by margatoxin, a Kv1.3 blocker. The association of gp120 enhancement of Kv1.3 current with microglia neurotoxicity was demonstrated by experimental results that blocking microglia Kv1.3 attenuated gp120-associated microglia production of neurotoxins and neurotoxicity. Knockdown of Kv1.3 gene by transfection of microglia with Kv1.3-siRNA abrogated gp120-associated microglia neurotoxic activity. Further investigation unraveled an involvement of p38 MAPK in gp120 enhancement of microglia Kv1.3 expression and resultant neurotoxic activity. These results suggest not only a role Kv1.3 may have in gp120-associated microglia neurotoxic activity, but also a potential target for the development of therapeutic strategies.  相似文献   
3.
Neuropathic pain is a serious physical disabling condition resulting from lesion or dysfunction of the peripheral sensory nervous system. Despite the fact that the mechanisms underlying neuropathic pain are poorly understood, the involvement of voltage-gated calcium (CaV) channels in its pathophysiology has justified the use of drugs that bind the CaV channel α2δ auxiliary subunit, such as gabapentin (GBP), to attain analgesic and anti-allodynic effects in models involving neuronal sensitization and nerve injury. GBP binding to α2δ inhibits nerve injury-induced trafficking of the α1 pore forming subunits of CaV channels, particularly of the N-type, from the cytoplasm to the plasma membrane of pre-synaptic terminals in dorsal root ganglion neurons and dorsal horn spinal neurons. In the search for alternative forms of treatment, in this study we describe the synthesis and pharmacological profile of a GABA derivative, 2-aminoadamantane-1-carboxylic acid (GZ4), which displays a close structure–activity relationship with GBP. Behavioral assessment using von Frey filament stimuli showed that GZ4 treatment reverted mechanical allodynia/hyperalgesia in an animal model of spinal nerve ligation-induced neuropathic pain. In addition, using the patch clamp technique we show that GZ4 treatment significantly decreased whole-cell currents through N-type CaV channels heterologously expressed in HEK-293 cells. Interestingly, the behavioral and electrophysiological time course of GZ4 actions reflects that its mechanism of action is similar but not identical to that of GBP. While GBP actions require at least 24 h and imply uptake of the drug, which suggests that the drug acts mainly intracellularly affecting channels trafficking to the plasma membrane, the faster time course (1–3 h) of GZ4 effects suggests also a direct inhibition of Ca2+ currents acting on cell surface channels.  相似文献   
4.
Thresholds for detecting vibrotactile signals of variable frequency applied to the thenar eminence of the hand by small and large contactors were measured in subjects ranging in age from 10 to 89 years. Thresholds were found to increase as a function of age, but the rate of increase was greater after than before the age of 65 years. The rate of loss of vibrotactile sensitivity was substantially greater in the P channel (mediated by Pacinian corpuscles) than in the NP I channel (mediated by rapidly adapting fibers), the NP II channel (mediated by slowly adapting type II fibers), or the NP HI channel (mediated by slowly adapting type I fibers). Women were frequently found to have greater sensitivity than men.  相似文献   
5.
The EphA2 receptor tyrosine kinase plays a central role in the regulation of cell adhesion and guidance in many human tissues. The activation of EphA2 occurs after proper dimerization/oligomerization in the plasma membrane, which occurs with the participation of extracellular and cytoplasmic domains. Our study revealed that the isolated transmembrane domain (TMD) of EphA2 embedded into the lipid bicelle dimerized via the heptad repeat motif L535X3G539X2A542X3V546X2L549 rather than through the alternative glycine zipper motif A536X3G540X3G544 (typical for TMD dimerization in many proteins). To evaluate the significance of TMD interactions for full-length EphA2, we substituted key residues in the heptad repeat motif (HR variant: G539I, A542I, G553I) or in the glycine zipper motif (GZ variant: G540I, G544I) and expressed YFP-tagged EphA2 (WT, HR, and GZ variants) in HEK293T cells. Confocal microscopy revealed a similar distribution of all EphA2-YFP variants in cells. The expression of EphA2-YFP variants and their kinase activity (phosphorylation of Tyr588 and/or Tyr594) and ephrin-A3 binding were analyzed with flow cytometry on a single cell basis. Activation of any EphA2 variant is found to occur even without ephrin stimulation when the EphA2 content in cells is sufficiently high. Ephrin-A3 binding is not affected in mutant variants. Mutations in the TMD have a significant effect on EphA2 activity. Both ligand-dependent and ligand-independent activities are enhanced for the HR variant and reduced for the GZ variant compared with the WT. These findings allow us to suggest TMD dimerization switching between the heptad repeat and glycine zipper motifs, corresponding to inactive and active receptor states, respectively, as a mechanism underlying EphA2 signal transduction.  相似文献   
6.
The excised patch clamp configuration provides a unique technique for some types of single channel analyses, but maintenance of stable, long-lasting preparations may be confounded by rundown and/or rapid loss of seal. Studies were performed on the amiloride-sensitive Na+ channel, located on the apical surface of A6 cells, to determine whether the nystatininduced open cell-attached patch could serve as an alternative configuration.Compared to excised inside-out patches, stable preparations were achieved more readily with the open cell-attached patch (9% vs. 56% of attempts). In both preparations, the current voltage (I-V) relation was linear, current amplitudes were equal at opposite equivalent clamped voltages, and E rev was zero in symmetrical Na+ solutions, indicating similar Na+ activities on the cytosolic and external surfaces of the patch. Moreover, there was no evidence that nystatin altered channel activity in the patch because slope conductance (3–4pS) and E rev (75 mV), when the bath was perfused with a high K:low Na solution (E Na=80 mV), were nearly equal in both patch configurations.Our results therefore indicate that the nystatininduced open cell-attached patch can serve as an alternative approach to the excised inside-out patch when experiments require modulation of univalent ions in the cytosol.We thank Dr. Olaf S. Andersen for his suggestions in the development of the open cell-attached recording technique. This work was supported by a National Institutes of Health grant (DK-18061)  相似文献   
7.
Abstract Energy-coupling sites in the electron transport chain of the obligately fermentative aerotolerant bacterium Zymomonas mobilis were examined. The H+ /O stoichiometry of the electron transport chain in intact bacteria oxidizing ethanol was close to 3.3. Cytoplasmic membrane vesicles coupled NADH oxidation to ATP synthesis. With ascorbate/phenazine methosulfate they showed oxygen uptake which was sensitive to antimycin A, but no significant ATP synthesis could be detected. Cells with a defective coupling site I, prepared by cultivation on a sulfate-deficient medium, showed a decreased rotenone sensitivity of respiration, and they lacked almost all the respiration-driven proton translocation and ATP synthesis. We conclude that, despite the reported composition of the electron transport chain, only energy coupling site 1 was functional in Z. mobilis .  相似文献   
8.
The assembly of high voltage-activated Ca2+ channels with different β subunits influences channel properties and possibly subcellular targeting. We studied β subunit expression in the somata and axon terminals of the magnocellular neurosecretory cells, which are located in the supraoptic nucleus (SON) and neurohypophysis, respectively. Antibodies directed against the 4 CaVβ subunits (CaVβ1-CaVβ4) were used for immunoblots and for immunostaining of slices of these two tissues. We found that all 4 β subunits are expressed in both locations, but that CaVβ2 had the highest relative expression in the neurohypophysis. These data suggest that the CaVβ2 subunit is selectively targeted to axon terminals and may play a role in targeting and/or regulating the properties of Ca2+ channels.  相似文献   
9.
Summary The voltage-dependent sodium channel from the eel electroplax was purified and reconstituted into vesicles of varying lipid composition. Isotopic sodium uptake experiments were conducted with vesicles at zero membrane potential, using veratridine to activate channels and tetrodotoxin to block them. Under these conditions, channel-dependent uptake of isotopic sodium by the vesicles was observed, demonstrating that a certain fraction of the reconstituted protein was capable of mediating ion fluxes. In addition, vesicles untreated with veratridine showed significant background uptake of sodium; a considerable proportion of this flux was blocked by tetrodotoxin. Thus these measurements showed that a significant subpopulation of channels was present that could mediate ionic fluxes in the absence of activating toxins. The proportion of channels exhibiting this behavior was dependent on the lipid composition of the vesicles and the temperature at which the uptake was measured; furthermore, the effect of temperature was reversible. However, the phenomenon was not affected by the degree of purification of the protein used for reconstitution, and channels in resealed electroplax membrane fragments or reconstituted, solely into native eel lipids did not show this behavior. The kinetics of vesicular uptake through these spontaneously-opening channels was slow, and we attribute this behavior to a modification of sodium channel inactivation.  相似文献   
10.
Gramicidin A forms ion-conducting channels which can traverse the hydrocarbon core of lipid bilayer membranes. The structures formed by gramicidin A are among the best characterized of all membrane-bound polypeptides or proteins. In this review a brief summary is given of the occurrence, conformation, and synthesis of gramicidin A, and of its use as a model for ion transport and the interaction of proteins and lipids in biological membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号