首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2019年   2篇
  2007年   1篇
  2003年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Trans-translation is a process found in all bacteria, which contributes to the release of ribosomes that are stalled through a variety of causes, for example when the 3' end of a truncated mRNA lacking a stop codon is reached or at internal clusters of rare codons. Trans-translation requires tmRNA. Trans-translation is not essential for cell viability under laboratory conditions, but recently it has been shown that it can contribute to cell viability in the presence of protein synthesis inhibitors. In this minireview, we consider the connection between trans-translation and antibiotics and the potential of using trans-translation as a therapeutic target.  相似文献   
2.
Ribosomal protein S1 (RpsA) has been identified as a novel target of pyrazinoic acid (POA), which is the active form of pyrazinamide (PZA), in vivo. RpsA plays a crucial role in trans-translation, which is widespread in microbes. In our investigation, we first described the discovery of promising RpsA antagonists for drug-resistant mycobacterium (MtRpsAd438A) and M. smegmatis, as well as wild-type M. tuberculosis. These antagonists were discovered via structure/ligand-based virtual screening approaches. A total of 21 targeted compounds were selected by virtual screening, combined scores, affinity, similarities and rules for potential as drugs. Next, the affinities of these compounds for three targeted proteins were tested in vitro by applying various technologies, including fluorescence quenching titration (FQT), saturation transfer difference (STD), and chemical shift perturbation (CSP) assays. The results showed that seven compounds had a high affinity for the targeted proteins. Our discovery set the stage for discovering new chemical entities (NCEs) for PZA-resistant tuberculosis and providing key residues for rational drug design to target RpsA.  相似文献   
3.
The trans-translation system in bacteria promotes recycling of stalled ribosomes and targets incomplete peptides for proteolysis. In Escherichia coli, loss of trans-translation function has little effect on growth under normal laboratory conditions. Among the subtle phenotypes of tmRNA-deficient mutants is the inability to plate certain lambda imm(P22) phages. This phenotype is dependent on the ribosome recycling functions of the trans-translation system but is independent of its proteolysis-targeting activity. The experiments described here show that translation of the first (resume) codon of the tmRNA open reading frame by a tRNA is both necessary and sufficient for ribosome recycling. While a variety of sense codons can replace the naturally-occurring GCA alanine codon as the resume codon, both AAA and AAG lysine codons are non-functional resume codons. These results suggest that the main function of tmRNA in releasing stalled ribosomes is to supply a stop codon and so facilitate termination and subsequent ribosome recycling.  相似文献   
4.
细菌在翻译过程中,mRNA受到损伤(如缺失终止密码子)时会使翻译提前终止,导致核糖体熄火,细菌自身会启动核糖体拯救途径。由tmRNA-SmpB介导的反式翻译系统是结核分枝杆菌中的核糖体拯救途径,对结核分枝杆菌的生长繁殖有重大影响。为探究分枝杆菌中反式翻译途径的启动及其功能特点,本研究选取耻垢分枝杆菌为实验菌株,分别以mCherry和egfp作为报告基因,通过在报告基因3′端添加大肠埃希菌终止子序列,构建能在菌体中反映反式翻译表达的报告体系,并初步探究该体系中报告基因的动态表达特点。结果显示,相比正常表达mCherry的对照菌株,实验菌株中表达的错误mCherry蛋白很快被水解,菌体颜色均明显浅于前者,增强绿色荧光蛋白(enhanced green fluorescent protein,EGFP)定量检测数据也显示错误EGFP水平显著低于正常表达的EGFP水平,表明两种反式翻译报告体系均构建成功。报告基因的动态表达数据显示,蛋白出现翻译异常时,耻垢分枝杆菌可在蛋白翻译过程中快速启动反式翻译途径,并于40~45h将不成熟错误蛋白完全水解。本研究构建的反式翻译报告体系可为后续开展分枝杆菌反式翻译途径的功能研究及抗结核药物筛选提供帮助。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号