首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   5篇
  2020年   2篇
  2019年   1篇
  2018年   5篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   4篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   4篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1987年   2篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
1.
Tim44 is a protein of the mitochondrial inner membrane and serves as an adaptor protein for mtHsp70 that drives the import of preproteins in an ATP-dependent manner. In this study we have modified the interaction of Tim44 with mtHsp70 and characterized the consequences for protein translocation. By deletion of an 18-residue segment of Tim44 with limited similarity to J-proteins, the binding of Tim44 to mtHsp70 was weakened. We found that in the yeast Saccharomyces cerevisiae the deletion of this segment is lethal. To investigate the role of the 18-residue segment, we expressed Tim44Delta18 in addition to the endogenous wild-type Tim44. Tim44Delta18 is correctly targeted to mitochondria and assembles in the inner membrane import site. The coexpression of Tim44Delta18 together with wild-type Tim44, however, does not stimulate protein import, but reduces its efficiency. In particular, the promotion of unfolding of preproteins during translocation is inhibited. mtHsp70 is still able to bind to Tim44Delta18 in an ATP-regulated manner, but the efficiency of interaction is reduced. These results suggest that the J-related segment of Tim44 is needed for productive interaction with mtHsp70. The efficient cooperation of mtHsp70 with Tim44 facilitates the translocation of loosely folded preproteins and plays a crucial role in the import of preproteins which contain a tightly folded domain.  相似文献   
2.
3.
4.
Mitochondria import nuclear-encoded precursor proteins to four different subcompartments. Specific import machineries have been identified that direct the precursor proteins to the mitochondrial outer membrane, inner membrane or matrix, respectively. However, a machinery dedicated to the import of mitochondrial intermembrane space (IMS) proteins has not been found so far. We have identified the essential IMS protein Mia40 (encoded by the Saccharomyces cerevisiae open reading frame YKL195w). Mitochondria with a mutant form of Mia40 are selectively inhibited in the import of several small IMS proteins, including the essential proteins Tim9 and Tim10. The import of proteins to the other mitochondrial subcompartments does not depend on functional Mia40. The binding of small Tim proteins to Mia40 is crucial for their transport across the outer membrane and represents an initial step in their assembly into IMS complexes. We conclude that Mia40 is a central component of the protein import and assembly machinery of the mitochondrial IMS.  相似文献   
5.
The mitochondrial targeting signal in the presequence of mitochondrial precursor proteins is recognized by Tom20 and subsequently by Tim50 in mitochondria. Yeast Tim50 contains two presequence binding sites in the conserved core domain and in the fungi-specific C-terminal presequence binding domain (PBD). We report the NMR analyses on interactions of a shorter variant of PBD (sPBD), a shorter variant of PBD, with presequences. The presequence is recognized by sPBD in a similar manner to Tom20. sPBD can also bind to the core domain of Tim50 through the presequence binding region, which could promote transfer of the presequence from sPBD to the core domain in Tim50.  相似文献   
6.
Translocation of the presequence is an early event in import of preproteins across the mitochondrial inner membrane by the TIM23 complex. Import of signal peptides, whose sequences mimic mitochondrial import presequences, was measured using a novel, qualitative, fluorescence assay in about 1h. This peptide assay was used in conjunction with classical protein import analyses and electrophysiological approaches to examine the mechanisms underlying the functional effects of depleting two TIM23 complex components. Tim23p forms, at least in part, the pore of this complex while Tim44p forms part of the translocation motor. Depletion of Tim23p eliminates TIM23 channel activity, which interferes with both peptide and preprotein translocation. In contrast, depletion of Tim44p disrupts preprotein but not peptide translocation, which has no effect on TIM23 channel activity. Two conclusions were made. First, this fluorescence peptide assay was validated as two different mutants were accurately identified. Hence, this assay could provide a rapid means of screening mutants to identify those that fail an initial step in import, i.e., translocation of the presequence. Second, translocation of signal peptides required normal channel activity and disruption of the presequence translocase-associated motor complex did not modify TIM23 channel activity nor prevent presequence translocation.  相似文献   
7.
Translocase of IM (inner membrane; Tim)9 and Tim10 are essential homologue proteins of the mitochondrial intermembrane space (IMS) and form a stable hexameric Tim9–Tim10 complex there. Redox-switch of the four conserved cysteine residues plays a key role during the biogenesis of these proteins and, in turn, the Tim proteins play a vital chaperone-like role during import of mitochondrial membrane proteins. However, the functional mechanism of the small Tim chaperones is far from solved and it is unclear whether the individual proteins play specific roles or the complex functions as a single unit. In the present study, we examined the requirement and role for the individual disulfide bonds of Tim9 on cell viability, complex formation and stability using yeast genetic, biochemical and biophysical methods. Loss of the Tim9 inner disulfide bond led to a temperature-sensitive phenotype and degradation of both Tim9 and Tim10. The growth phenotype could be suppressed by deletion of the mitochondrial i-AAA (ATPases associated with diverse cellular activities) protease Yme1, and this correlates strongly with stabilization of the Tim10 protein regardless of Tim9 levels. Formation of both disulfide bonds is not essential for Tim9 function, but it can facilitate the formation and improve the stability of the hexameric Tim9–Tim10 complex. Furthermore, our results suggest that the primary function of Tim9 is to protect Tim10 from degradation by Yme1 via assembly into the Tim9–Tim10 complex. We propose that Tim10, rather than the hexameric Tim9–Tim10 complex, is the functional form of these proteins.  相似文献   
8.
9.
The TIM17:23 complex on the mitochondrial inner membrane is responsible for import of the majority of mitochondrial proteins in plants. In Arabidopsis, Tim17 and Tim23 belong to a large gene family consisting of 16 members termed the Preprotein and Amino acid transporters (PRAT). Recently, two members of this protein family, Tim23-2 and the Complex I subunit B14.7, have been shown to assemble into both Complex I of the respiratory chain and the TIM17:23 complex (Wang et al., 2012), adding to other examples of links between respiratory and protein import complexes. These associations provide a mechanism to coordinate mitochondrial activity and biogenesis.  相似文献   
10.
Oligodendrocytes stain more strongly for iron than any other cell in the CNS, and they require iron for the production of myelin. For most cell types transferrin is the major iron delivery protein, yet neither transferrin receptor protein nor mRNA are detectable in mature oligodendrocytes. Thus an alternative iron delivery mechanism must exist. Given the significant long term consequences of developmental iron deficiency and the iron requirements for normal myelination, identification of the iron delivery mechanism for oligodendrocytes is important. Previously we have reported that oligodendrocytes bind H‐ferritin and that H‐ferritin binds to white matter tracts in vivo. Recently, T cell immunoglobulin and mucin domain‐containing protein‐2 (Tim‐2) was shown to bind and internalize H‐ferritin. In the present study we show that Tim‐2 is expressed on oligodendrocytes both in vivo and in vitro. Further, the onset of saturable H‐ferritin binding in CG4 oligodendrocyte cell line is accompanied by Tim‐2 expression. Application of a blocking antibody to the extracellular domain of Tim‐2 significantly reduces H‐ferritin binding to the differentiated CG4 cells and primary oligodendrocytes. Tim‐2 expression on CG4 cells is responsive to iron; decreasing with iron loading and increasing with iron chelation. Taken together, these data provide compelling evidence that Tim‐2 is the H‐ferritin receptor on oligodendrocytes suggesting it is the primary mechanism for iron acquisition by these cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号