首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   436篇
  免费   18篇
  国内免费   26篇
  2024年   1篇
  2023年   6篇
  2022年   7篇
  2021年   8篇
  2020年   5篇
  2019年   9篇
  2018年   7篇
  2017年   9篇
  2016年   14篇
  2015年   10篇
  2014年   13篇
  2013年   88篇
  2012年   8篇
  2011年   13篇
  2010年   14篇
  2009年   14篇
  2008年   10篇
  2007年   19篇
  2006年   16篇
  2005年   21篇
  2004年   14篇
  2003年   17篇
  2002年   26篇
  2001年   15篇
  2000年   8篇
  1999年   12篇
  1998年   9篇
  1997年   9篇
  1996年   3篇
  1995年   5篇
  1994年   4篇
  1993年   5篇
  1992年   6篇
  1991年   5篇
  1990年   4篇
  1989年   6篇
  1988年   5篇
  1987年   1篇
  1986年   4篇
  1985年   3篇
  1984年   8篇
  1983年   7篇
  1982年   5篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
排序方式: 共有480条查询结果,搜索用时 15 毫秒
1.
2.
Macroautophagy is a bulk degradation mechanism in eukaryotic cells. Efficiency of an essential step of this process in yeast, Atg8 lipidation, relies on the presence of Atg16, a subunit of the Atg12–Atg5-Atg16 complex acting as the E3-like enzyme in the ubiquitination-like reaction. A current view on the functional structure of Atg16 in the yeast S. cerevisiae comes from the two crystal structures that reveal the Atg5-interacting α-helix linked via a flexible linker to another α-helix of Atg16, which then assembles into a homodimer. This view does not explain the results of previous in vitro studies revealing Atg16-dependent deformations of membranes and liposome-binding of the Atg12–Atg5 conjugate upon addition of Atg16. Here we show that Atg16 acts as both a homodimerizing and peripheral membrane-binding polypeptide. These two characteristics are imposed by the two distinct regions that are disordered in the nascent protein. Atg16 binds to membranes in vivo via the amphipathic α-helix (amino acid residues 113–131) that has a coiled-coil-like propensity and a strong hydrophobic face for insertion into the membrane. The other protein region (residues 64–99) possesses a coiled-coil propensity, but not amphipathicity, and is dispensable for membrane anchoring of Atg16. This region acts as a Leu-zipper essential for formation of the Atg16 homodimer. Mutagenic disruption in either of these two distinct domains renders Atg16 proteins that, in contrast to wild type, completely fail to rescue the autophagy-defective phenotype of atg16Δ cells. Together, the results of this study yield a model for the molecular mechanism of Atg16 function in macroautophagy.  相似文献   
3.
Gelonin, purified from the seeds of Gelonium multiflorum, using cation-exchange and gel-filtration chromatography was characterised for its purity, homogeneity and molecular weight by reverse-phase HPLC (RP-HPLC) and SDS-PAGE analysis. The HPLC purified gelonin was used for entrapment studies in the liposomes. Liposomes were prepared by reverse phase evaporation (REV) technique using three different types of lipid composition in the same molar ratio. The method resulted in 75–80% entrapment efficiency of gelonin in the liposomes. Entrapped and unentrapped gelonin was characterized for physico-chemical, immunochemical and biological properties. The immunoreactivity of entrapped gelonin was fully preserved but the ribosome-inactivating property was slightly inhibited. The method involved mild conditions, highly reproducible and the liposomes produced appeared to be stable for several months. It has important implications in the development of cell type specific cytotoxic agents where a chemical cross-linking is involved which significantly inhibits both immunoreactivity and ribosome-inactivating ability of the toxin.  相似文献   
4.
The effect of non-insulin-dependent diabetes mellitus (i.e., NIDDM; type 2 diabetes) on the levels of functional mitochondrial anion transport proteins has been determined utilizing a chemically-induced neonatal model of NIDDM. We hypothesized that moderate insulin deficiency exacerbated by the insulin resistance, which is characteristic of NIDDM, would cause changes in mitochondrial anion transporter function that were similar to those we have previously shown to occur in insulin-dependent diabetes mellitus (i.e., IDDM; type 1 diabetes) (Arch. Biochem. Biophys. 280: 181–191, 1990). Our experimental approach consisted of the extraction of the pyruvate, dicarboxylate and citrate transport proteins from the mitochondrial inner membrane with Triton X-114 using rat liver mitoplasts (prepared from diabetic and control animals) as the starting material, followed by the functional reconstitution of each transporter in a proteoliposomal system. This strategy permitted the quantification of the functional levels of these three transporters in the absence of the complications that arise when such measurements are carried out with intact mitochondria (or mitoplasts). We found that experimental NIDDM did not cause significant changes in the extractable and reconstitutable specific (and total) transport activities of the pyruvate, dicarboxylate, and citrate transporters. These results are in marked contrast to our previous findings obtained using rats with IDDM and negated our hypothesis. The present results, in combination with our earlier findings, allow us to conclude that insulin plays an important role in the regulation of mitochondrial anion transporter function. Accordingly, in this model of NIDDM, where the level of insulin is not profoundly deficient, transporter function is unaltered, whereas in IDDM, where a profound insulinopenia exists, transporter function is altered. Furthermore, the present studies suggest that in the neonatal model of NIDDM the three mitochondrial transporters investigated are neither affected by, nor are they the sites of the well documented hepatic post-receptor insulin resistance which is characteristic of this disease.  相似文献   
5.
The behavior of dehydroergosterol in -α-dimyristoylphosphatidylcholine (DMPC) unsonicated multilamellar liposomes was characterized by absorption spectroscopy and fluorescence measurements. Dehydroergosterol exhibited a lowered absorption coefficient in multilamellar liposomes whiel the steady-state fluorescence anisotropy of dehydroergosterol in these membranes decreased significantly with increasing dehydroergosterol concentration, suggesting membrane sterol-sterol interactions. The comparative steady-state anisotropy of 0.9 mole percent dehydroergosterol in multilamellar liposomes was lower than in small unilamellar vesicles suggesting different sterol environments for dehydroergosterol. Dehydroergosterol fluorescence lifetime was relatively independent of membrane sterol content and yielded similar values in sonicated and unsonicated model membranes. In multilamellar liposomes containing 5 mole percent cholesterol, the gel-to-liqui crystalline phase transition of DMPC detected by 0.9 mole percent dehydroergosterol was significantly broadened when compared to the phase transition detected by dehydroergosterol in the absence of membrane cholesterol (Smutzer, G. et al. (1986) Biochim. Biophys. Acta 862, 361–371). In multilamellar liposomes containing 10 mole percent cholesterol, the major fluorescence lifetime of dehydroergosterol did not detect the gel-to-liquid crystalline phase transition of DMPC. Time-correlated fluorescence anisotropy decays of dehydroergosterol in DMPC multilamellar liposomes in the absence and presence of 5 mole percent cholesterol exhibited a single rotational correlation time near one nanosecond that was relatively independent of temperature and low concentrations of membrane cholesterol. The limiting anisotropy of 0.9 mole percent dehydroergosterol decreased above the gel-to-liquid crystalline phase transition in membranes without cholesterol and was not significantly affected by the phase transition in membranes containing 5 mole percent cholesterol. These results suggested hindered rotational diffusion of dehydroergosterol in multilamellar liposomes. Lifetime and time-correlated fluorescence measurements of 0.9 mole percent dehydroergosterol in multilamellar liposomes further suggested this fluorophore was detecting physical properties of the bulk membrane phospholipids in membranes devoid of cholesterol and was detecting sterol-rich regions in membranes of low sterol concentration.  相似文献   
6.
As a prerequisite for the use of liposomes for delivery of biologically active agents, techniques are required for the efficient and rapid entrapment of such agents in liposomes. Here we review the variety of procedures available for trapping hydrophilic and hydrophobic compounds. Considerations which are addressed include factors influencing the choice of a particular liposomal system and techniques for the passive entrapment of drugs in multilamellar vesicles and unilamellar vesicles. Attention is also paid to active trapping procedures relying on the presence of (negatively) charged lipid or transmembrane ion gradients. Such gradients are particularly useful for concentrating lipophilic cationic drugs inside liposomes, allowing trapping efficiencies approaching 100%.  相似文献   
7.
The model system for the analysis of targeted liposomes is proposed--the layer of protein antigen adsorbed on polystyrene wells. Antibodies were treated with palmitoyl chloride and liposomes were produced by the cholate dialysis method in the presence of the modified protein (7 X 10(-4) mol protein/mol lipid). Affinity of antibody-bearing liposomes to the antigen on the surface of Multiwell plates was studied, and apparent dissociation constant value was estimated: KD was in the range 1.5 to 5 X 10(-9) M liposomes. Sequential transfers of liposomes in antigen-coated plates revealed that the high-affinity fraction of liposomes is adsorbed first. The bound fraction has 1.7-times-higher protein content. For effective in vivo targeting it would be necessary to have high-affinity liposomes and a high concentration of the target antigen.  相似文献   
8.
After an i.p. transplantation of an allogeneic tumor (Meth A) to C57BL/6 mice, a macrophage (MΦ)-rich, non-T, non-NK cell population is induced as the major infiltrate and cytotoxic cells. We here evaluated the role of the MΦs in the rejection of allografted Meth A cells and characterized the MΦs in comparison with other well-known MΦs. At all time intervals after transplantation, the highest cytotoxic activities against Meth A tumor were obtained with the MΦ-rich population. In addition, the lymphocyte-rich population had a significant but low cytotoxic activity, whereas two other population types, granulocytes and large granular cells, were inactive. When the MΦ-rich or the T cell-depleted MΦ-rich population was i.p. transplanted simultaneously with Meth A cells into untreated C57BL/6 mice, the tumor cells were rejected without growth. After specific elimination of MΦs by in vivo application of dichloromethylene diphosphonate-containing liposomes, the cytotoxic activity against Meth A cells was hardly induced at the transplantation site of Meth A cells and the allografted Meth A tumor continued to grow, indicating that a type of MΦ is the effector cell essential for the rejection. In contrast to other well-known MΦs, the cytotoxic activity against Meth A cells was cell-to-cell contact dependent and soluble factor (e.g., NO and TNF-α) independent. Moreover, the cytotoxic activity of the MΦs (H-2b) against 51Cr-labeled Meth A (H-2d) cells was inhibited by the addition of unlabeled H-2d, but not H-2a, H-2k or H-2b, lymphoblasts as well as Meth A cells, implying the specific interaction of the MΦs with H-2d cells.  相似文献   
9.
Ace IJ29 and Ac IJ40 are cold- and heat-sensitive variants of the gene coding for acetylcholinesterase in Drosophila melanogaster. In the homozygous condition, these mutations are lethal when animals are raised at restrictive temperatures, i.e., below 23° C for Ace IJ29 or above 25° C for Ace IJ40. The coding regions of the gene in these mutants were sequenced and mutations changing Ser374 to Phe in Ace IJ29 and Pro75 to Leu in Ace IJ40 were found. Acetylcholinesterases bearing these mutations were expressed in Xenopus oocytes and we found that these mutations decrease the secretion rate of the protein most probably by affecting its folding. This phenomenon is exacerbated at restrictive temperatures decreasing the amount of secreted acetylcholinesterase below the lethality threshold. In parallel, the substitution of the conserved Asp248 by an Asn residue completely inhibits the activity of the enzyme and its secretion, preventing the correct folding of the protein in a non-conditional manner.  相似文献   
10.
A synthetic 22-mer oligodeoxyribonucleotide having an AACGTT palindrome, AAC-22, induced interferon (IFN) production and augmented the natural killer (NK) activity in murine splenocytes, whereas its analogue, ACC-22, having an ACCGGT palindrome, did not. The binding of AAC-22 to splenocytes was not different from that of ACC-22. Lipofection of AAC-22 to splenocytes remarkably enhanced IFN production and NK cell activity, whereas that of ACC-22 caused little enhancement. These results strongly suggest that the prerequisite for IFN production is not the binding of AAC-22 to the cell surface receptors, but its penetration into the spleen cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号