首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   3篇
  97篇
  2023年   2篇
  2022年   2篇
  2021年   6篇
  2020年   5篇
  2019年   4篇
  2018年   5篇
  2017年   4篇
  2016年   1篇
  2015年   4篇
  2014年   9篇
  2013年   17篇
  2012年   2篇
  2011年   5篇
  2010年   6篇
  2009年   6篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2003年   2篇
  2002年   1篇
  1997年   1篇
  1993年   1篇
  1985年   1篇
  1983年   2篇
  1981年   1篇
  1977年   1篇
  1976年   2篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
1.
Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells.   总被引:342,自引:0,他引:342  
Treatment of Ltk?, mouse L cells deficient in thymidine kinase (tk), with Bam I restriction endonuclease cleaved DNA from herpes simplex virus-1 (HSV-1) produced tk+ clones with a frequency of 10?6/2 μg of HSV-1 DNA. Untreated cells or cells treated with Eco RI restriction endonuclease fragments produced no tk+ clones under the same conditions. The thymidine kinase activities of four independently derived clones were characterized by biochemical and serological techniques. By these criteria, the tk activities were found to be identical to HSV-1 tk and different from host wildtype tk. The tk+ phenotype was stable over several hundred cell generations, although the rate of reversion to the tk? phenotype, as judged by cloning efficiency in the presence of bromodeoxyuridine, was high (1–5 × 10?3). HSV-1 DNA Bam restriction fragments were separated by gel electrophoresis, and virtually all activity, as assayed by transfection, was found to reside in a 3.4 kb fragment. Transformation efficiency with the isolated fragment is 20 fold higher per gene equivalent than with the unfractionated total Bam digest. These results prove the usefulness of transfection assays as a means for the bioassay and isolation of restriction fragments carrying specific genetic information. Cells expressing HSV-1 tk may also provide a useful model system for the detailed analysis of eucaryotic and viral gene regulation.  相似文献   
2.
《遗传学报》2020,47(9):535-546
Osteoclasts are bone resorption cells of myeloid origin. Osteoclast defects can lead to osteopetrosis, a genetic disorder characterized by bone sclerosis for which there is no effective drug treatment. It is known that Pu.1 and Fms are key regulators in myelopoiesis, and their defects in mice can lead to reduced osteoclast numbers and consequent osteopetrosis. Yet how Pu.1 and Fms genetically interact in the development of osteoclasts and the pathogenesis of osteopetrosis is still unclear. Here, we characterized pu.1G242D;fmsj4e1 double-deficient zebrafish, which exhibited a greater deficiency of functional osteoclasts and displayed more severe osteopetrotic symptoms than the pu.1G242D or fmsj4e1 single mutants, suggesting a synergistic function of Pu.1 and Fms in the regulation of osteoclast development. We further demonstrated that Pu.1 plays a dominant role in osteoclastogenesis, whereas Fms plays a dominant role in osteoclast maturation. Importantly, treatment with the drug retinoic acid significantly relieved the different degrees of osteopetrosis symptoms in these models by increasing the number of functional osteoclasts. Thus, we report the development of valuable animal models of osteopetrosis, and our results shed light on drug development for antiosteopetrosis therapy.  相似文献   
3.
Inflammatory periodontal disease known as periodontitis is one of the most common conditions that affect human teeth and often leads to tooth loss. Due to the complexity of the periodontium, which is composed of several tissues, its regeneration and subsequent return to a homeostatic state is challenging with the therapies currently available. Cellular therapy is increasingly becoming an alternative in regenerative medicine/dentistry, especially therapies using mesenchymal stem cells, as they can be isolated from a myriad of tissues. Periodontal ligament stem cells (PDLSCs) are probably the most adequate to be used as a cell source with the aim of regenerating the periodontium. Biological insights have also highlighted PDLSCs as promising immunomodulator agents. In this review, we explore the state of knowledge regarding the properties of PDLSCs, as well as their therapeutic potential, describing current and future clinical applications based on tissue engineering techniques.  相似文献   
4.
The method of synthesizing acyclonucleoside iron chelators is both convenient and cost effective compared to that of synthesizing ribonucleoside iron chelators. The X‐ray crystal structural analysis shows that the 2‐hydroxyethoxymethyl group does not affect the geometry of the iron chelating sites. Therefore, the iron binding and removal properties of the acyclonucleoside iron chelators should remain similar to the ribonucleoside iron chelators, which is confirmed by the titration and competition reaction of the acyclonucleoside chelators with iron and ferritin, respectively. The acyclonucleoside iron chelators are more lipophilic with measured n‐octanol and Tris buffer distribution coefficients than ribonucleoside iron chelators.  相似文献   
5.
Stroke is a leading cause of death, disability, and socioeconomic loss worldwide. The majority of all strokes result from an interruption in blood flow (ischemia) 1. Middle cerebral artery (MCA) delivers a great majority of blood to the lateral surface of the cortex 2, is the most common site of human stroke 3, and ischemia within its territory can result in extensive dysfunction or death 1,4,5. Survivors of ischemic stroke often suffer loss or disruption of motor capabilities, sensory deficits, and infarct. In an effort to capture these key characteristics of stroke, and thereby develop effective treatment, a great deal of emphasis is placed upon animal models of ischemia in MCA.Here we present a method of permanently occluding a cortical surface blood vessel. We will present this method using an example of a relevant vessel occlusion that models the most common type, location, and outcome of human stroke, permanent middle cerebral artery occlusion (pMCAO). In this model, we surgically expose MCA in the adult rat and subsequently occlude via double ligature and transection of the vessel. This pMCAO blocks the proximal cortical branch of MCA, causing ischemia in all of MCA cortical territory, a large portion of the cortex. This method of occlusion can also be used to occlude more distal portions of cortical vessels in order to achieve more focal ischemia targeting a smaller region of cortex. The primary disadvantages of pMCAO are that the surgical procedure is somewhat invasive as a small craniotomy is required to access MCA, though this results in minimal tissue damage. The primary advantages of this model, however, are: the site of occlusion is well defined, the degree of blood flow reduction is consistent, functional and neurological impairment occurs rapidly, infarct size is consistent, and the high rate of survival allows for long-term chronic assessment.  相似文献   
6.
Epithelial to mesenchymal transition (EMT) is essential for proper morphogenesis during development. Misregulation of this process has been implicated as a key event in fibrosis and the progression of carcinomas to a metastatic state. Understanding the processes that underlie EMT is imperative for the early diagnosis and clinical control of these disease states. Reliable induction of EMT in vitro is a useful tool for drug discovery as well as to identify common gene expression signatures for diagnostic purposes. Here we demonstrate a straightforward method for the induction of EMT in a variety of cell types. Methods for the analysis of cells pre- and post-EMT induction by immunocytochemistry are also included. Additionally, we demonstrate the effectiveness of this method through antibody-based array analysis and migration/invasion assays.  相似文献   
7.
High-definition transcranial direct current stimulation (HD-tDCS) has recently been developed as a noninvasive brain stimulation approach that increases the accuracy of current delivery to the brain by using arrays of smaller "high-definition" electrodes, instead of the larger pad-electrodes of conventional tDCS. Targeting is achieved by energizing electrodes placed in predetermined configurations. One of these is the 4x1-ring configuration. In this approach, a center ring electrode (anode or cathode) overlying the target cortical region is surrounded by four return electrodes, which help circumscribe the area of stimulation. Delivery of 4x1-ring HD-tDCS is capable of inducing significant neurophysiological and clinical effects in both healthy subjects and patients. Furthermore, its tolerability is supported by studies using intensities as high as 2.0 milliamperes for up to twenty minutes.Even though 4x1 HD-tDCS is simple to perform, correct electrode positioning is important in order to accurately stimulate target cortical regions and exert its neuromodulatory effects. The use of electrodes and hardware that have specifically been tested for HD-tDCS is critical for safety and tolerability. Given that most published studies on 4x1 HD-tDCS have targeted the primary motor cortex (M1), particularly for pain-related outcomes, the purpose of this article is to systematically describe its use for M1 stimulation, as well as the considerations to be taken for safe and effective stimulation. However, the methods outlined here can be adapted for other HD-tDCS configurations and cortical targets.  相似文献   
8.
The increased prevalence of type 2 diabetes mellitus (T2DM) and life expectancy of diabetic patients fosters the worldwide prevalence of retinopathy and nephropathy, two major microvascular complications that have been difficult to treat with contemporary glucose-lowering medications. The gut microbiota (GM) has become a lively field research in the last years; there is a growing recognition that altered intestinal microbiota composition and function can directly impact the phenomenon of ageing and age-related disorders. In fact, human GM, envisaged as a potential source of novel therapeutics, strongly modulates host immunity and metabolism. It is now clear that gut dysbiosis and their products (e.g. p-cresyl sulfate, trimethylamine?N?oxide) dictate a secretory associated senescence phenotype and chronic low-grade inflammation, features shared in the physiological process of ageing (“inflammaging”) as well as in T2DM (“metaflammation”) and in its microvascular complications. This review provides an in-depth look on the crosstalk between GM, host immunity and metabolism. Further, it characterizes human GM signatures of elderly and T2DM patients. Finally, a comprehensive scrutiny of recent molecular findings (e.g. epigenetic changes) underlying causal relationships between GM dysbiosis and diabetic retinopathy/nephropathy complications is pinpointed, with the ultimate goal to unravel potential pathophysiological mechanisms that may be explored, in a near future, as personalized disease-modifying therapeutic approaches.  相似文献   
9.
10.
From circadian rhythms to cancer chronotherapeutics   总被引:14,自引:0,他引:14  
Mammalian circadian rhythms result from a complex organization involving molecular clocks within nearly all “normal” cells and a dedicated neuroanatomical system, which coordinates the so-called “peripheral oscillators.” The core of the central clock system is constituted by the suprachiasmatic nuclei that are located on the floor of the hypothalamus. Our understanding of the mechanisms of circadian rhythm generation and coordination processes has grown rapidly over the past few years. In parallel, we have learnt how to use the predictable changes in cellular metabolism or proliferation along the 24h time scale in order to improve treatment outcome for a variety of diseases, including cancer. The chronotherapeutics of malignant diseases has emerged as a result of a consistent development ranging from experimental, clinical, and technological prerequisites to multicenter clinical trials of chronomodulated delivery schedules. Indeed large dosing-time dependencies characterize the tolerability of anticancer agents in mice or rats, a better efficacy usually results from treatment administration near the least toxic circadian time in rodent tumor models. Programmable in time multichannel pumps have allowed to test the chronotherapy concepts in cancer patients and to implement chronomodulated delivery schedules in current practice. Clinical phase I and II trials have established the feasibility, the safety, and the activity of the chronotherapy schedules, so that this treatment method has undergone further evaluation in international multicenter phase III trials. Overall, more than 2000 patients with metastatic disease have been registered in chronotherapy trials. Improved tolerability and/or better antitumor activity have been demonstrated in randomized multicenter studies involving large patient cohorts. The relation between circadian rhythmicity and quality of life and even survival has also been a puzzling finding over the recent years. An essential step toward further developments of circadian-timed therapy has been the recent constitution of a Chronotherapy cooperative group within the European Organization for Research and Treatment of Cancer. This group now involves over 40 institutions in 12 countries. It is conducting currently six trials and preparing four new studies. The 19 contributions in this special issue reflect the current status and perspectives of the several components of cancer chronotherapeutics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号