首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2019年   1篇
  2008年   1篇
  2003年   1篇
排序方式: 共有3条查询结果,搜索用时 421 毫秒
1
1.
Dopamine D1/D2 receptors are important targets for drug discovery in the treatment of central nervous system diseases. To discover new and potential D1/D2 ligands, 17 derivatives of tetrahydroprotoberberine (THPB) with various substituents were prepared by chemical synthesis or microbial transformation using Streptomyces griseus ATCC 13273. Their functional activities on D1 and D2 receptors were determined by cAMP assay and calcium flux assay. Seven compounds showed high activity on D1/D2 receptor with low IC50 values less than 1?µM. Especially, top compound 5 showed strong antagonistic activity on both D1 and D2 receptor with an IC50 of 0.391 and 0.0757?µM, respectively. Five compounds displayed selective antagonistic activity on D1 and D2 receptor. The SAR studies revealed that (1) the hydroxyl group at C-9 position plays an important role in keeping a good activity and small or fewer substituents on ring D of THPBs may also stimulate their effects, (2) the absence of substituents at C-9 position tends to be more selective for D2 receptor, and (3) hydroxyl substitution at C-2 position and the substitution at C-9 position may facilitate the conversion of D1 receptor from antagonist to agonist. Molecular docking simulations found that Asp 103/Asp 114, Ser 107/Cys 118, and Trp 285/ Trp 386 of D1/ D2 receptors are the key residues, which have strong interactions with the active D1/D2 compounds and may influence their functional profiles.  相似文献   
2.
3.
The tetrahydroprotoberberines (THPBs) are compounds isolated from Chinese herbs that possess a unique pharmacological profile as D2 dopamine receptor antagonists and D1 receptor agonists. l-Tetrahydropalmatine (l-THP) and l-stepholidine (SPD), members of the THPB family, were shown to have potential clinical use in the treatment of pain. However, their mechanism of action is not clear. In the past decades, Chinese scientists have made a great deal of effort to explore the mechanisms by which the THPBs and its analogues elicit antinociception and their potential utility in treating drug abuse. It is now clear that the antinociception produced by l-THP is related to inhibition of D2 dopamine receptors. The present review focuses on the recent progress made in understanding the mechanisms of l-THP- and l-SPD-mediated antinociception and the sequel of drug addiction.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号