首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2018年   1篇
  2017年   1篇
  2011年   1篇
  2007年   1篇
  1990年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Despite several recent analyses on the phylogeny of Neuroptera some questions still remain to be answered. In the present analysis we address these questions by exploring a hitherto unexplored character complex: the tentorium, the internal cuticular support structure of the insect head. We described in detail the tentoria of representatives of all extant neuropteran families and the muscles originating on the tentorium using 3D microCT images and analyzed differences in combination with a large published matrix based on larval characters. We find that the tentorium and associated musculature are a source of phylogenetically informative characters. The addition of the tentorial characters to the larval matrix causes a basad shift of the Sisyridae and clearly supports a clade of all Neuroptera except Sisyridae and Nevrorthidae. A sister group relationship of Coniopterygidae and the dilarid clade is further corroborated. A general trend toward a reduction of the dorsal tentorial arms and the development of laminatentoria is observed. In addition to the phylogenetic analysis, a correlation among the feeding habits, the development of the maxillary muscles, and the laminatentoria is demonstrated.  相似文献   
2.
Based on their developmental patterns, the bony tentorium (BT) and bony falx (BF) of mammals can be classified into two types, the carnivoran type and the dolphin type. The former develops as part of the skull bones during the fetal period and is already completed at birth, while the latter is gradually formed by ossification in the tentorium cerebelli (TC) and falx cerebri (FC) during the course of aging. The BT of spider monkeys is assigned to the dolphin type.  相似文献   
3.
The influence of the falx and tentorium on brain injury biomechanics during impact was studied with finite element (FE) analysis. Three detailed 3D FE head models were created based on the images of a healthy, normal size head. Two of the models contained the addition of falx and tentorium with material properties from previously published experiments. Impact loadings from a reconstructed concussive case in a sport accident were applied to the two players involved. The results suggested that the falx and tentorium could induce large strains to the surrounding brain tissues, especially to the corpus callosum and brainstem. The tentorium seemed to constrain the motion of the cerebellum while inducing large strain in the brainstem in both players involved in the accident (one player had mainly coronal head rotation and the other had both coronal and transversal rotations). Since changed strain levels were observed in the brainstem and corpus callosum, which are classical sites for diffuse axonal injuries (DAI), we confirmed the importance of using accurate material properties for falx and tentorium in a FE head model when studying traumatic brain injuries.  相似文献   
4.
Megasecoptera is an extinct group of insects with specialized rostrum-like mouthparts, which is a synapomorphy shared with all members of the Late Paleozoic Palaeodictyopterida, and markedly slender wings that are unable to flex backwards. Here we describe the close up morphology of Protohymenidae and Scytohymenidae and uncover new aspects of the endoskeleton (tentorium) of the head, structure of the mouthparts with discernible proximal part of stylets controlled by muscles, surface of compound eyes that consist of a hexagonal pattern of large facets, structure and microstructures on the wings and reconstruct male and female external genitalia using ESEM and light stereomicroscopy. Furthermore, we describe Protohymen novokshonovi sp. n. based on an exceptionally well preserved fossil from the early Permian at Tshekarda in Russia, which shows crucial details, and the earliest species of Protohymenidae, Carbohymen testai gen. et sp. n. from a late Carboniferous siderite nodule at Mazon Creek in Illinois, USA. Our comparative study confirmed a set of structural and microstructural details on their wings, such as the composite anterior wing margin, development of an apical cell and the previously unknown external genitalia. Based on the results and comparison of homologous structures known primarily for extant relatives, such as mayflies and dragonflies, we outline for the first time the function of the mouthparts, in particular, the stylets, structure of the tentorium, vision provided by large hexagonal ommatidia and male copulatory structures bearing curved claspers for holding a female during copulation and penial lobes with seminal grooves.  相似文献   
5.
The tentorium, the anterior sulci of the head capsule (epistomal, subgenal, subantennal, circumantennal, and circumocular sulci), and the extension of the anterior tentorial pit were studied in 26 species of Blattaria (representing most principal lineages), 4 species of Mantodea (including the basal Mantoida schraderi), and 1 species each of Isoptera (the basal Mastotermes darwiniensis) and Mantophasmatodea (Austrophasma caledonense). The morphology of these head structures is compared with literature data on other insect orders, mainly Phasmatodea, Orthoptera, Dermaptera, Embioptera, and Plecoptera, and partly Odonata and Zygentoma. Characters are defined, presented in a matrix, and evaluated with regard to phylogenetic implications and homoplastic evolution. The structural relationships of the subantennal sulcus to the subgenal, circumocular, and circumantennal sulci, which are highly variable and strongly homoplastic (depending much on the size of the compound eyes) are a focal issue; several types of subantennal sulci are defined. The presence of an anterior transverse bridge in the tentorium (“perforated tentorium”) of all Dictyoptera here studied confirms the monophyly of this group. Mantophasmatodea lacks this element.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号