首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  12篇
  2013年   1篇
  2007年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1977年   1篇
  1975年   1篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Summary Calpasoma dactyloptera, a tentacled form of minute, freshwater coelenterate, has been investigated by light and electron microscopy and time-lapse cinematography. Each tentacle consists of a protrusion from a single ectodermal epithelial cell termed a tentaculocyte. hin tentaculocyte vesicles which represent invaginations of the plasma membrane. A cnidocil protrudes into the external medium. The bottom of each nematocyte is elongated as a stalk which extends to the tentacle base, coursing through tubular membrane lined channels within the tentaculocyte. A network of fibers and microtubules, originating in the cnidocil, extends to the base of the nematocyte stalk.Supported by PHS Research Career Development Award 1-K04-GM42595 and NSF Research Grant GB 29284.  相似文献   
2.
Summary The tentacle of Rhabdopleura compacta (Hemichordata) consists of two layers of cells surrounding a central coelomic cavity. The two layers of cells are separated by a cell free basement lamella.The tentacles on the arms of Rhabdopleura bear three longitudinal rows of cilia. The ciliated cells are closely associated with bundles of nerve fibres, and between some of the cells and nerve fibres there are synapses. The peripheral regions of the ciliated cells are joined to one another by desmosomes. Tonofibrils join some of these desmosomes to the kinetosomes of the cilia.The nerve fibres are confined to the ectodermal layer and the muscle cells to the layer of cells within the basement lamella. In the ectodermal layer besides ciliated cells there are mucus cells, densely pigmented cells, and green bodies. The function of these last two types of cells is secretory. Most of the epithelial cells have microvilli upon their free borders.I wish to thank Professor J. Z. Young F. R. S. for enthusiastic advice and encouragement. Dr. R. Bellairs generously provided the facilities for electron microscopy. Mr. R. Moss gave excellent technical and photographic assistance. Dr. A. Stebbing of the Plymouth Marine Biological Laboratory helped me to obtain and to identify the specimens. Professor D. W. James kindly allowed me to use his facilities for interference microscopy.  相似文献   
3.
This paper provides first information on organ-like bacterial aggregates in the tentacles of the sea anemone Metridium senile. The specimens were collected from waters near Helgoland (German Bight, North Sea) and the Orkney Islands. Tentacles were prepared for morphological inspection by light and scanning electron microscopy as well as for the phylogenetic analysis of endocytic bacteria. Bacterial aggregates are located in caverns of the tentacles’ epidermis. The aggregates are enwrapped in thin envelopes, which contain coccoid and/or rod-shaped tightly packed bacteria of different division states. Most of the bacterial cells are connected by fine filamentous structures. The phylogenetic determination is based on the sequence data of the 16S rDNA derived from tentacle material. Sequence analysis revealed three different subgroups of intratentacular proteobacteria. The dominant band, detected in all of the samples tested, showed a close relationship (98%) to a gram-negative Endozoicimonas elysicola. Two bands, only detected in tentacles of M. senile from Helgoland were assigned to Pseudomonas saccherophilia (99%), a knallgas bacterium, and to Ralstonia pickettii (100%). The bacteria represent a specific bacterial community. Their DGGE profiles do not correspond to the profiles of the planktonic bacteria generated from seawater close to the habitats of the anemones. The allocation of DNA sequences to the different morphotypes, their isolation, culturing and the elucidation of the physiological functions of intratentacular bacteria are in progress.  相似文献   
4.
Summary Following observation of conical groups of stiff, but motile cilia on the tentacles of the branchial crown of Sabella pavonina, these were examined with the electron microscope. The bundles consist of about 40 unenclosed standard cilia supported by one or two primary sense cells with centrally directed axons of 0.1–0.2 diameter. Axons in the distal portions of the branchial crown occur in small bundles surrounded by a basement membrane. More centrally, glial elements appear and the nerves are surrounded by a collagenous sheath. The branchial nerve trunk shows similarities in organisation to other previously investigated annelid central nervous tissue in that the whole nerve is surrounded by a fibrous sheath central to which there is a layer of glial cells with processes penetrating a central neuropile. The 0.1–0.2 axons commonly occur in glial-enveloped groups of < 40 whilst other axons of larger and mixed diameter are found together.Each tentacle has two branchial nerves on the oral side, and each nerve gives rise to two small 75-axon branches running to each pinnule. The branchial nerves fuse to form the branchial nerve trunk running to the supra-oesophageal ganglia.Sections of the branchial nerves of the branchial crown at progressively more central levels show that the branchial nerve trunk contains enough axons of 0.1–0.2 diameter to account for all the sensory cells on the tentacles. This is taken as evidence for the sensory cells having axons terminating within the central nervous system and that there is no peripheral confluence or fusion of these afferent axons.  相似文献   
5.
Summary The tentacles of the suctorian protozoonDiscophrya collini are stimulated to contract by externally applied Ca2+. The role of extracellular Ca2+ in tentacle contraction was studied by monitoring45Ca2+ uptake, using ionophore A23187 to facilitate membrane transport of calcium and ruthenium red (RR) as an inhibitor of transport. The degree of tentacle retraction was dependent upon external Ca2+ concentration and studies with45Ca2+ using scintillation counting indicated a linear relationship between external Ca2+ concentration and Ca2+ uptake. Uptake of Ca2+ was enhanced in the presence of the ionophore while RR caused little inhibition.45Ca2+ uptake was only partially inhibited by RR when cells were subjected to a Ca2+, ionophore and RR mixture. Grain counts from light microscope autoradiographs after treatment of cells with45Ca2+/ionophore,45Ca2+/RR or45Ca2+ alone showed heavy, light and intermediate labelling respectively. In all instances the grains were evenly distributed within the cell.These observations are interpreted as supporting the suggestion that the ionophore enhances both the uptake of extracellular Ca2+ and release of Ca2+from an internal source, while the RR could only partially prevent movement of Ca2+ through the plasma mebrane. A model is presented suggesting that tentacle retraction is mediated by cytosolic Ca2+ levels which are determined by the fluxing of Ca2+ across the plasma membrane and the membrane of elongate dense bodies which act as internal Ca2+ reservoirs.  相似文献   
6.
Résumé Le trajet des grands nerfs de la couronne tentaculaire et la structure du collier nerveux péripharyngien dont ils se détachent, ont été précisés chez Electra pilosa par des imprégnations argentiques in toto selon la technique de Bielschowsky et par une étude d'ultrastructure.Chaque tentacule est innervé par quatre faisceaux nerveux, dépourvus d'envelope gliale, qui courent entre l'épithélium et l'assise collagène qui délimite le canal tentaculaire interne; trois sont rassemblés sous les trois rangées cellulaires épithéliales de l'arête orale du tentacule et le quatrième est médian-dorsal.Les cellules épithéliales orales-latérales, par leur forme pédonculée, par la densité de leur cytoplasme, par leur cil unique et par leur relation topographique et cytologique avec les nerfs tentaculaires sous-jacents, présentent des adaptations structurales telles qu'il parait probable qu'elles assurent une fonction tactile.L'examen du collier péripharyngien montre son caractère organisé et la complexité des connexions qui coordonnent l'ensemble des tentacules et relient le lophophore à d'autres secteurs de l'innervation.
The innervation of the lophophore in a chilostome
Summary The pathway of the tentacle nerves and the organisation of the peripharyngial nervous belt from which they arise, have been studied in Electra pilosa by silver stained whole mounts (Bielschowsky technique), and by ultrastructural investigation.Each tentacle is innervated by four nervous fascicles without any differentiated glial sheath, running between the epithelium and the collagen layer which surrounds the muscles and the peritoneal cells in the internal tentacle canal. Three nerves are gathered underneath the three rows of epithelial cells forming the oral edge of the tentacle. The fourth nerve is in medio-dorsal location.The oral epithelial cells show such ultrastructural adaptations in their general shape, in the density of their cytoplasm, in their ciliary apparatus reduced to a single cilium and in their close topographical and cytological relationship with the underlying tentacle nerves that it seems most probable they have a tactile function.The analysis of the pattern of the peripharyngial nervous belt shows a precise organisation and the intrication of the connections which coordinate the tentacles and link the lophophore set to other pathways of general innervation.
  相似文献   
7.
Borisenko, I. and Ereskovsky, A.V. 2011. Tentacular apparatus ultrastructure in the larva of Bolinopsis infundibulum (Lobata: Ctenophora). —Acta Zoologica (Stockholm) 00 : 1–10. Most ctenophores have a tentacular apparatus, which plays some role in their feeding. Tentacle structure has been described in adults of only three ctenophore species, but the larval tentacles have remained completely unstudied. We made a light and electron microscopic study of the tentacular apparatus in the larvae of Bolinopsis infundibulum from the White Sea. The tentacular apparatus of B. infundibulum larvae consists of the tentacle proper and the tentacle root. The former contains terminally differentiated cells, while the latter contains stem cells and cells undergoing differentiation. The core of the tentacle is formed by myocytes, and its epidermis contains colloblasts (hunting cells), wall cells, degenerating cask cells, refractive vesicles, and ciliated sensory cells. Stem cells, colloblasts, and cask cells at various stages of differentiation and putative myocytes progenitors were revealed in the tentacle root. Two different populations of the stem cells in the tentacle root give rise to epidermal (colloblasts and cask cells) and mesogleal (myocytes) cell lines. Nervous elements, glandular cells, and basal lamina were not found. Step‐by‐step differentiation of colloblasts and cask cells is described.  相似文献   
8.
Summary Tentacle structure, movement and feeding of the commensal suctorian Choanophrya infundibulifera have been examined by light, scanning and transmission electron microscopy. The tentacles possess a flattened tip and rounded shaft externally, with a neck and root region internally. There is a microtubule canal consisting of 150 ring microtubules within which are 20–35 curved lamellae each containing about 20 microtubules. Novel structural features include pairs of short oblique arranged microtubules at the tip, and a collar of epiplasm in the neck region. No haptocysts are found in Choanophrya but the tentacle cytoplasm contains two types of inclusions named solenocysts and spherical vesicles. These features are discussed in relation to the processes of tentacle movement and feeding. The rapid longitudinal movements of the tentacles are described and compared to those of other suctorians and possible mechanisms are suggested. Ingestion in Choanophrya is described and several theories involving tentacle microtubules in the feeding process are examined.This investigation was supported by the J.S. Dunkerley Fellowship in Protozoology, awarded by the University of Manchester.  相似文献   
9.
Summary The tentacles of eleven species of dendrochirote holothurians have been studied. The water vascular system, deep fibre system, ectoneural nerve ring and superficial fibre system are described and are similar to those of other holothurian tentacles. A conspicuous fuzzy coat covers the entire tentacular surface except for the tips of cilia. On the basis of its structure it is thought to be an attenuated glycocalyx. Its function is discussed in relation to anti-fouling and surface adhesion. The two surface coats underlying the fuzzy coat are termed the cuticle. Bacteria are found both within the surface coats and in the sub-cuticular space. Primary fixatives lacking osmium give poor preservation of the surface coats. The adhesive papillae of the apices of the tentacles contain elements of support cells and two other cells named Type-1 and Type-2 papillar cells. The secretions of Type-1 papillar cells are dense-cored vesicles and may contain a proteinaceous adhesive. The vesicles fuse with the cuticle and release their products which are apparently disseminated along the fuzzy coat filaments. The secretions of Type-2 papillar cells may have a neurosecretory function. The different models of food capture by dendrochirote tentacles are discussed as are duo-glandular adhesive systems in relation to dendrochirote tentacles.  相似文献   
10.
Summary The tentacles of the apodous holothurian Genus Leptosynapta have been studied by use of transmission and scanning electron microscopy. The gross anatomy, water vascular system, fibre systems and ectoneural nerve ring are described. A fuzzy coat of attenuated filaments covers the surface of the tentacle, broken only by secretory ducts. A cuticle underlies the fuzzy coat. Bacteria are common in the subcuticular space. Fixation without osmium gives poor preservation of the surface coats. The epidermis consists of a single layer of columnar cells consisting of Type-1, Type-2, support, goblet and uniciliated cells. Type-1 cells secrete electron-dense material and appear to be homologous to adhesive cells of the tentacles of other holothurians. The support cells contain large, granular vesicles not found in other holothurians. Goblet cells contain flocculent mucus and have an apical cilium. Goblet cells are not found in other holothurian tentacles and may function to lubricate and wrap adhering particles to aid their ingestion. The uniciliated cells are rare, poorly developed and the cilium does not extend past the cuticle. The ultrastructure of the tentacles is discussed in relation to those of other holothurians.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号