首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2886篇
  免费   196篇
  国内免费   170篇
  2023年   53篇
  2022年   59篇
  2021年   75篇
  2020年   106篇
  2019年   131篇
  2018年   119篇
  2017年   72篇
  2016年   78篇
  2015年   81篇
  2014年   165篇
  2013年   229篇
  2012年   76篇
  2011年   140篇
  2010年   112篇
  2009年   110篇
  2008年   141篇
  2007年   168篇
  2006年   149篇
  2005年   113篇
  2004年   83篇
  2003年   103篇
  2002年   106篇
  2001年   73篇
  2000年   70篇
  1999年   63篇
  1998年   49篇
  1997年   65篇
  1996年   48篇
  1995年   32篇
  1994年   41篇
  1993年   40篇
  1992年   39篇
  1991年   40篇
  1990年   16篇
  1989年   26篇
  1988年   23篇
  1987年   16篇
  1986年   15篇
  1985年   22篇
  1984年   22篇
  1983年   12篇
  1982年   11篇
  1981年   10篇
  1980年   14篇
  1979年   10篇
  1978年   4篇
  1977年   7篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
排序方式: 共有3252条查询结果,搜索用时 15 毫秒
1.
Depolymerization of hyaluronic acid (HA) by low-molecular-weight Amadori-rearrangement products in the presence of Cu2 + was studied as an in vitro model for the glycated protein-mediated degradation of biopolymers. This oxygen radical-mediated depolymerization was found to be specifically accelerated by Cu2 + , and significantly inhibited by catalase, hydroxyl radical scavengers, and metal ion chelators. Glycated polylysine also depolymerized HA. The difference in depolymerization rate between low- and high-molecular-weight Amadori products is discussed.  相似文献   
2.
《Developmental cell》2022,57(11):1383-1399.e7
  1. Download : Download high-res image (247KB)
  2. Download : Download full-size image
  相似文献   
3.
MiR-204 is expressed in vascular smooth muscle cells (VSMC). However, its role in VSMC contraction is not known. We determined if miR-204 controls VSMC contractility and blood pressure through regulation of sarcoplasmic reticulum (SR) calcium (Ca2+) release. Systolic blood pressure (SBP) and vasoreactivity to VSMC contractile agonists (phenylephrine (PE), thromboxane analogue (U46619), endothelin-1 (ET-1), angiotensin-II (Ang II) and norepinephrine (NE) were compared in aortas and mesenteric resistance arteries (MRA) from miR-204−/− mice and wildtype mice (WT). There was no difference in basal systolic blood pressure (SBP) between the two genotypes; however, hypertensive response to Ang II was significantly greater in miR-204−/− mice compared to WT mice. Aortas and MRA of miR-204−/− mice had heightened contractility to all VSMC agonists. In silico algorithms predicted the type 1 Inositol 1, 4, 5-trisphosphate receptor (IP3R1) as a target of miR-204. Aortas and MRA of miR-204−/− mice had higher expression of IP3R1 compared to WT mice. Difference in agonist-induced vasoconstriction between miR-204−/− and WT mice was abolished with pharmacologic inhibition of IP3R1. Furthermore, Ang II-induced aortic IP3R1 was greater in miR-204−/− mice compared to WT mice. In addition, difference in aortic vasoconstriction to VSMC agonists between miR-204−/− and WT mice persisted after Ang II infusion. Inhibition of miR-204 in VSMC in vitro increased IP3R1, and boosted SR Ca2+ release in response to PE, while overexpression of miR-204 downregulated IP3R1. Finally, a sequence-specific nucleotide blocker that targets the miR-204-IP3R1 interaction rescued miR-204-induced downregulation of IP3R1. We conclude that miR-204 controls VSMC contractility and blood pressure through IP3R1-dependent regulation of SR calcium release.  相似文献   
4.
How Can the Eco‐efficiency of a Region be Measured and Monitored?   总被引:2,自引:0,他引:2  
The concept of eco-efficiency is commonly referred to as a business link to sustainable development. In this article, ecoefficiency is examined at a regional level as an approach to promoting the competitiveness of economic activities in the Finnish Kymenlaakso region and mitigating their harmful impacts on the environment. The aim is to develop appropriate indicators for monitoring changes in the eco-efficiency of the region. A starting point is to produce indicators for the environmental and economic dimensions of regional development and use them for measuring regional eco-efficiency. The environmental impact indicators are based on a life-cycle assessment method, producing different types of environmental impact indicators: pressure indicators (e.g., emissions of CO2), impact category indicators (e.g., CO2 equivalents in the case of climate change), and a total impact indicator (aggregating different impact category indicator results into a single value). Environmental impact indicators based on direct material input, total material input, and total material requirement of the Kymenlaakso region are also assessed. The economic indicators used are the gross domestic product, the value added, and the output of the main economic sectors of Kymenlaakso. In the eco-efficiency assessment, the economic and environmental impact indicators are monitored in the same graph. In a few cases eco-efficiency ratios can also be calculated (the economic indicators are divided by the environmental indicators). Output (= value added + intermediate consumption) is used as an economic indicator related to the environmental impact indicators, which also cover the upstream processes of the region's activities. In the article, we also discuss the strengths and weaknesses of using the different environmental impact indicators.  相似文献   
5.
  相似文献   
6.
《Cell》2022,185(20):3753-3769.e18
  1. Download : Download high-res image (311KB)
  2. Download : Download full-size image
  相似文献   
7.
Summary The medullary pyramid of renculi in kidneys of ringed seals (Phoca hispida) is enclosed by a basket composed of ribbons of stromal tissue continuous with the wall of the calyx. Branched smooth muscle cells with well-developed Golgi complexes and rough endoplasmic reticulum and only an incomplete external lamina are the principal cells in sites near the origin of the ribbons from the calycal wall. Deeper in the corticomedullary junctional region, smooth muscle is progressively replaced with stellate or spindle-shaped cells exhibiting structural characteristics intermediate between those of fibroblasts and smooth muscle fibers. These myofibroblast-like cells contain arrays of parallel microfilaments 6–8 nm thick with associated focal densities and subplasmalemmal dense plaques, caveolae, elongate, often deeply wrinkled nuclei, and well-developed Golgi complexes and rough endoplasmic reticulum. Material resembling external lamina is associated with parts of the surfaces of most myofibroblast-like cells and intermediate junctions are present. Fibroblasts lacking arrays of parallel microfilaments are a minority at any level in the stromal ribbons. Interstitial cells in the vicinity of the corticomedullary junction show similar myofibroblast-like characteristics. The smooth muscle and myofibroblast-like cells presumably assist expression of urine from the papilla and calyx, and possibly participate as pacemakers for the urinary tract.  相似文献   
8.
Cultured circular smooth muscle from the rabbit colon   总被引:1,自引:0,他引:1  
Summary Although cultured vascular smooth muscle cells have been extensively characterized and investigated, there are very few studies of cultured intestinal smooth muscle cells. The aim of this study was to culture colonic smooth muscle (CSM) cells from the rabbit colon. Freshly isolated CSM cells from the circular muscle layer of the distal colon were prepared by collagenase digestion. In primary culture, CSM cells attached to the culture vessels by 48 to 72 h, proliferated by 3 to 7 d, and reached confluency by 14 to 17 d with a “hill-and-valley” pattern. Spontaneous contractions were not observed at any time at 21° or 37° C. Confluent primary cultures were greater than 95% CSM cells, as identified by intensely positive immunofluorescent staining to smooth muscle actin-specific CGA7 and muscle-specific HHF-35 monoclonal antibodies. Transmission electron microscopy of freshly isolated and proliferating CSM cells revealed ultrastructural features consistent with smooth muscle cells. We successfully cultured CSM cells of the rabbit from freshly isolated cells and validated these CSM cells by electron microscopy and immunocytochemical staining. These highly pure primary cultures may be used to investigate numerous aspects of CSM cell metabolism and physiology. These studies were supported by the National Institutes of Health grant to the Inflammatory Bowel Disease Center (Bethesda, MD) P30-AM-32200 and R01-DK-31147. Dr. Kao is the recipient of a Research Career Development Award from the National Foundation for Ileitis and Colitis, Inc. A preliminary report of this work was presented at the American Motility Society Meeting, Houston, TX, in October 1986, and appeared in abstract form inGastroenterology 91: 1057; 1986.  相似文献   
9.
Summary The suicide vector pJB4JI was used to generate a range of Tn5-induced mutants of Erwinia carotovora subsp. carotovora (Ecc). One mutant, HC500, was a cysteine auxotroph which had a non-pectolytic, non-cellulolytic, non-proteolytic phenotype when grown under sulphate-limitation. The cysteine lesion of HC500 was shown to be analogous to the cysB mutation of Escherichia coli. The Ecc-cysB + gene product was identified as a protein of Mr 36000.  相似文献   
10.
The voltage-dependent slow channels in the myocardial cell membrane are the major pathway by which Ca2+ ions enter the cell during excitation for initiation and regulation of the force of contraction of cardiac muscle. The slow channels have some special properties, including functional dependence on metabolic energy, selective blockade by acidosis, and regulation by the intracellular cyclic nucleotide levels. Because of these special properties of the slow channels, Ca2+ influx into the myocardial cell can be controlled by extrinsic factors (such as autonomic nerve stimulation or circulating hormones) and by intrinsic factors (such as cellular pH or ATP level). The slow Ca2+ channels of the heart are regulated by cAMP in a stimulatory fashion. Elevation of cAMP produces a very rapid increase in number of slow channels available for voltage activation during excitation. The probability of a slow channel opening and the mean open time of the channel are increased. Therefore, any agent that increases the cAMP level of the myocardial cell will tend to potentiate Isi, Ca2+ influx, and contraction. The myocardial slow Ca2+ channels are also regulated by cGMP, in a manner that is opposite to that of CAMP. The effect of cGMP is presumably mediated by means of phosphorylation of a protein, as for example, a regulatory protein (inhibitory-type) associated with the slow channel. Preliminary data suggest that calmodulin also may play a role in regulation of the myocardial slow Ca2+ channels, possibly mediated by the Ca2+-calmodulin-protein kinase and phosphorylation of some regulatory-type of protein. Thus, it appears that the slow Ca2+ channel is a complex structure, including perhaps several associated regulatory proteins, which can be regulated by a number of extrinsic and intrinsic factors.VSM cells contain two types of Ca2+ channels: slow (L-type) Ca2+ channels and fast (T-type) Ca2+ channels. Although regulation of voltage-dependent Ca2+ slow channels of VSM cells have not been fully clarified yet, we have made some progress towards answering this question. Slow (L-type, high-threshold) Ca2+ channels may be modified by phosphorylation of the channel protein or an associated regulatory protein. In contrast to cardiac muscle where cAMP and cGMP have antagonistic effects on Ca2+ slow channel activity, in VSM, cAMP and cGMP have similar effects, namely inhibition of the Ca2+ slow channels. Thus, any agent that elevates cAMP or cGMP will inhibit Ca2+ influx, and thereby act to produce vasodilation. The Ca2+ slow channels require ATP for activity, with a K0.5 of about 0.3 mM. C-kinase may stimulate the Ca2+ slow channels by phosphorylation. G-protein may have a direct action on the Ca2+ channels, and may mediate the effects of activation of some receptors. These mechanisms of Ca2+ channel regulation may be invoked during exposure to agonists or drugs, which change second messenger levels, thereby controlling vascular tone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号