首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   3篇
  12篇
  2017年   1篇
  2016年   2篇
  2009年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1993年   1篇
排序方式: 共有12条查询结果,搜索用时 0 毫秒
1.
The pollination biology of a population of 250 Yucca elata (Liliaceae) plants was studied in southern New Mexico. Yucca elata and the prodoxid yucca moth Tegeticula yuccasella have a mutualistic association that is essential for the successful sexual reproduction of both species. However, a wide range of other invertebrate species visit flowers during the day and at night. Our aim was to quantify the role of yucca moths and other invertebrate visitors in pollination and fruit set, using manipulative field experiments. Inflorescences were bagged during the day or night (N=12 inflorescences) to restrict flower visitors to either nocturnal or diurnal groups. Yucca moths were active exclusively nocturnally during the flowering period and thus did not visit inflorescences that were unbagged during the day. None of the 4022 flowers exposed only to diurnal visitors set fruit, whereas 4.6% of the 4974 flowers exposed only to nocturnal visitors (including yucca moths) produced mature fruit. The proportion of flowers producing fruit in the latter treatment was not significantly different from unbagged control inflorescences. In a series of experimental manipulations we also determined that: (1) flowers opened at dusk and were open for two days on average, but were only receptive to pollen on the first night of opening; (2) pollen must be pushed down the stigmatic tube to affect pollination; and (3) most plants require out-cross pollination to produce fruit. The combination of these results strongly suggests that yucca moths are the only species affecting pollination in Y. elata, and that if another species was to affect pollination, it would be a rare event.  相似文献   
2.
Chad J. Huth  Olle Pellmyr 《Oecologia》1999,119(4):593-599
Insect larvae such as those of yucca moths that feed on small, patchily distributed food items often face an elevated risk of intraspecific competition or cannibalism. For this reason, ovipositing females may assess a potential oviposition site for prior conspecific eggs or larvae before deciding whether to oviposit. Selective abortion of yucca flowers with high egg numbers prevents competition among larvae of the yucca moth Tegeticula yuccasella, but the same mechanism should select for female detection of and fewer ovipositions in flowers that already contain eggs. Female yucca moths presented with either virgin or previously visited flowers laid significantly fewer eggs in the latter flowers and pollinated them less often. A significant negative association was found between number of previous oviposition attempts in a flower and number of additional attempts by a female, suggesting a quantitative assessment of prior egg load, but the correlation coefficient was low. Factors contributing to this low correlation may include variation in signal quality, poor detection capability, uncertainty contributed by a variable oviposition attempt to egg ratio, and a variable response criterion based on recent female experience and physiological status. Females rationed their pollen by pollinating at decreasing frequency during a bout within a flower, and by depositing smaller pollen loads during later pollinations within a flower. Females ovipositing into a previously visited flower pollinated as frequently as would a first female for a given oviposition attempt within a flower, i.e., the probability of pollination after the nth oviposition was independent of whether it was performed by a first or a later moth. Experimental presentation of virgin flowers marked with a homogenate from female abdomens induced the same oviposition and pollination behavior as seen on previously visited flowers, suggesting the presence of a host-marking pheromone. Given that all eggs within a selectively aborted flower die, there may be selection among some yucca moths for providing a strong signal of floral egg status to conspecific females. Received: 1 December 1998 / Accepted: 7 February 1999  相似文献   
3.
Phytophagous insects use a wide range of indicators or associated cues to avoid laying eggs in sites where offspring survival is low. For insects that lay eggs in flowers, these unsuitable sites may be created by the host plant's resource allocation to flowers. In the sequentially flowering host plant, Yucca glauca, late‐opening distal flowers are more likely to be aborted in the presence of already‐initiated basal fruits because they are strong resource sinks. If flowers are aborted, all eggs of the phytophagous insect, Tegeticula yuccasella, within the flower die. We used the phytophagous insect T. yuccasella that lays eggs in and pollinates host plant Y. glauca flowers to test the hypothesis that phytophagous insect females are less likely to invest eggs in host plant flowers if basal fruits are present because they are more likely to be aborted. We also investigated potential predictors of arrival of T. yuccasella at inflorescences at the onset of flowering. These factors may influence a phytophagous insect's decisions to select oviposition sites. We carried out a behavioral experiment using wild‐caught T. yuccasella females on manipulated inflorescences with distal flowers with basal fruits and without fruits. As potential predictors of T. yuccasella arriving at inflorescences, we used floral display size and day of onset of flowering. In support of our hypothesis, our experimental results showed that T. yuccasella was significantly less likely to oviposit in distal flowers on inflorescences with basal fruits. We also found that T. yuccasella arrival was higher at inflorescences with larger floral display size and earlier in the flowering season. These findings uncover a novel indicator of unsuitable oviposition sites—the presence of basal fruits, that phytophagous insects use to make oviposition decisions. Further, our study contributes to the growing body of evidence that shows that females prefer sites that increase the probability of survival of their offspring.  相似文献   
4.
Unlike most pollinators, yucca moths are active pollinators of their host plants. Females lay their eggs in the flowers they pollinate, and their larvae feed solely on the resulting seeds. Previous evidence suggests that the yucca moth Tegeticula maculata avoids self-pollinating their host Yucca whipplei . Other yucca moths may self-pollinate more frequently. When pollinating, yucca moths are also reported to fly large distances between plants, bypassing neighbouring plants in the process. We experimentally verify the suggestion of Pellmyr et al . that yucca is more likely to retain fruits from self-pollination if overall fruit set is low. Thus, selection on moths to avoid self-pollinating should be density dependent. We found no evidence that mating with close neighbours resulted in inbreeding depression, thus the moth's long-distance flights between plants are yet to be explained.  相似文献   
5.
6.
Yucca filamentosa and its species-specific pollinator, the yucca moth, Tegeticula yuccasella (Lepidoptera: Prodoxidae), form a relationship that is often cited as a classic example of a coevolved plant-pollinator mutualism. Observations of the moth's behavior have led to predictions that moth dispersal is relatively limited and that, as a consequence, the self-compatible Y. filamentosa should experience relatively high rates of self-fertilization. In contrast, analyses of its mating system indicated that Y. filamentosa was predominantly outcrossed. To better understand effective breeding patterns in Y. filamentosa populations, 10 polymorphic allozyme loci were investigated to analyze the breeding structure of a natural Y. filamentosa population. Analyses revealed that Y. filamentosa is predominantly outcrossed, has multiply sired fruits, and that each fruit was sired by a different set of pollen donors. The effective number of pollen donors per fruit ranged from 1.56 to 3.13, indicating that some correlated mating exists within fruits. Paternity analyses revealed that pollen moved from 6 m to 293 m (mean = 118 m) within the study population and that a minimum of 10% of the progeny were sired by pollen originating outside of the population. These results are discussed in the context of the yucca–yucca moth mutualism.  相似文献   
7.
Costs of two non-mutualistic species in a yucca/yucca moth mutualism   总被引:1,自引:0,他引:1  
Mutualisms often involve significant costs for participants. Costs are inflicted by mutualists themselves, as well as by associated, non-mutualistic species. These costs are rarely quantified, however, particularly the ones extrinsic to the pairwise interaction. We compare costs inflicted by an obligate mutualist pollinator and two common exploiters of an Arizona yucca over a 2-year period. The magnitude of seed damage from seed and fruit-feeding beetle larvae (Carpophilus longus, Nitidulidae) was similar to damage from the seed-eating larvae of Yucca schottii's pollinator moth Tegeticula yuccasella (Prodoxidae), averaging about 15 seeds destroyed per fruit in each case. The two seed predators usually fed within the same fruits, although rarely side by side. In contrast, the presence of fruit-galling moth larvae (Prodoxusy-inversus, Prodoxidae) appeared to benefit the yucca: individual Tegeticula destroyed only half as many seeds in galled fruits as they did in ungalled fruits. We discuss three general implications of these results. Firstly, the costs of non-mutualists to the two mutualistic partners are not necessarily parallel. Secondly, measurable costs of non-mutualists do not necessarily translate into an impact on the success of the mutualism itself, because they may be incurred after mutualistic activities take place. Finally, the costs of mutualists to each other can differ substantially depending on the presence or absence of non-mutualistic species. Received:17 July 1996 / Accepted:10 June 1997  相似文献   
8.
9.
Ecological interactions between yucca moths (Tegeticula, Prodoxidae) and their host plants (Yucca, Agavaceae) are exemplary of obligate plant-pollinator mutualism and co-evolution. We describe a multiplex microsatellite DNA protocol for species identification and sibship assignment of sympatric larvae from Tegeticula synthetica and Tegeticula antithetica, pollinators of the Joshua tree (Yucca brevifolia). Bayesian clustering provides correct diagnosis of species in 100% of adult moths, with unambiguous identification of sympatric larvae. Sibship assignments show that larvae within a single fruit are more likely to be full-sibs or half-sibs than larvae from different fruit, consistent with the hypothesis that larval clutches are predominantly the progeny of an individual female.  相似文献   
10.
Reciprocal specialization in interspecific interactions, such as plant-pollinator mutualisms, increases the probability that either party can have detrimental effects on the other without the interaction being dissolved. This should be particularly apparent in obligate mutualisms, such as those that exist between yucca and yucca moths. Female moths collect pollen from yucca flowers, oviposit into floral ovaries, and then pollinate those flowers. Yucca moths, which are the sole pollinators of yuccas, impose a cost in the form of seed consumption by the moth larvae. Here we ask whether there also is a genetic cost through selfish moth behavior that may lead to high levels of self fertilization in the yuccas. Historically, it has been assumed that females leave a plant immediately after collecting pollen, but few data are available. Observations of a member of the Tegeticula yuccasella complex on Yucca filamentosa revealed that females remained on the plant and oviposited in 66% of all instances after observed pollen collections, and 51% of all moths were observed to pollinate the same plant as well. Manual cross and self pollinations showed equal development and retention of fruits. Subsequent trials to assess inbreeding depression by measuring seed weight, germination date, growth rate, and plant mass at 5 months revealed significant negative effects on seed weight and germination frequency in selfed progeny arrays. Cumulative inbreeding depression was 0.475, i.e., fitness of selfed seeds was expected to be less than half that of outcrossed seeds. Single and multilocus estimates of outcrossing rates based on allozyme analyses of open-pollinated progeny arrays did not differ from 1.0. The discrepancy between high levels of behavioral self-pollination by the moths and nearly complete outcrossing in mature seeds can be explained through selective foreign pollen use by the females, or, more likely, pollen competition or selective abortion of self-pollinated flowers during early stages of fruit development. Thus, whenever the proportion of pollinated flowers exceeds the proportion that can be matured to ripe fruit based on resource availability, the potential detrimental genetic effects imposed through geitonogamous pollinations can be avoided in the plants. Because self-pollinated flowers have a lower probability of retention, selection should act on female moths to move among plants whenever moth density is high enough to trigger abortion. Received: 18 March 1996 \Accepted: 30 July 1996  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号