首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  国内免费   2篇
  2018年   1篇
  2009年   1篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  1998年   1篇
  1994年   1篇
  1993年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
A Phialophora sp. (isolate I-52), originally isolated from soil in a wheat field exhibiting suppression of take-all disease caused by Gaeumannomyces graminis var. tritici , was tested under field conditions for its ability to suppress this disease in winter and spring wheat. I-52 was grown on a variety of autoclaved organic substrates, including oat, millet and canola seed. All of these gave significant disease control when added to the seed furrow with inoculum of the take-all fungus. W hole seed of I-52 substrate was as effective as particles < 0.5 mm in diameter. Placing I-52 in powdered form directly on to wheat seed was ineffective in controlling take-all. Rates as low as 2 g of I-52/3.3 m of row added with the seed provided some control of take-all, and nearly complete control in winter wheat was obtained using 15 g/3.3 m. The winter wheat host cultivar did not influence the degree of control of take-all by I-52.  相似文献   
2.
The bacterial strain E1R-j, isolated as an endophyte from wheat roots, exhibited high antifungal activity to Gaeumannomyces graminis var. tritici (Ggt). Strain E1R-j was identified as Bacillus subtilis based on morphological, physiological and biochemical methods as well as on 16S rDNA analysis. This strain inhibited mycelium growth in vitro of numerous plant pathogenic fungi, especially of Ggt, Coniothyrium diplodiella, Phomopsis sp. and Sclerotinia sclerotiorum. In greenhouse experiments, soil drenches with cell densities of 106, 109 and 1012 CFU ml−1 E1R-j reduced significantly take-all disease, caused by Ggt, in wheat seedling by 62.6%, 68.6% and 70.7%, respectively, compared to the inoculated control, 4 weeks after sowing. Growth parameters such as lengths and fresh weights of roots and shoots of Ggt-inoculated control plants were significantly lower compared to Ggt-inoculated and E1R-j treated plants. Field experiments in the season 2006/2007, heights of wheat plants in the Ggt inoculated plots were significantly reduced compared to the non inoculated treatments. Yield parameters such as kernels per head and thousand kernel weight (TKW) in inoculated control plants were lower compared to the other treatments. In the experimental year 2007/2008, independent treatments with the bacterial strain E1R-j and the fungicide Triadimefon reduced take-all disease in wheat roots by 55.3% and 61.9%, compared to the inoculated control plants. In this season plant height in inoculated control was significantly lower and also the yield parameters seeds per head and especially TKW were drastically reduced compared to the other treatments. E1R-j treatment alleviated the detrimental effects of take-all on grain yield parameters to a similar extent as Triadimefon application. SEM studies revealed that in the presence of E1R-j, hyphae of Ggt showed leakage, appeared ruptured, swollen and shriveled. Following root drench, strain E1R-j was able to colonize endophytically roots and leaves of wheat seedlings. While the population of the bacterial strain in wheat roots steadily increased from the second to the fourth leaf stage, in the leaf tissue the population of the strain rapidly declined. TEM studies also showed that cells of E1R-j were present in roots of wheat seedlings and effectively retarded infection and colonization of Ggt in root tissue; suppression of Ggt by E1R-j was accompanied by disintegration of hyphal cytoplasm. In addition, in the presence of E1R-j cells in Ggt-infected root tissue morphological defense reactions were triggered such as formation of wall appositions and papillae. The results presented indicate that the endophytic strain E1R-j of B. subtilis meets demands required for biocontrol of take-all.  相似文献   
3.
本文就小麦全蚀病菌胞外-1,3-葡聚糖酶的产生和部分酶学特性进行了研究。结果表明,小麦全蚀病菌能够产生胞外-1,3-葡聚糖酶。在供试的三种培养基中,最佳产酶培养基为改进的MS培养基。当以改进的MS为基础培养基时,最佳碳源为麦麸皮;最佳氮源为牛肉浸膏;产酶的最适条件为培养基初始pH为6,培养温度为26℃,250ml三角瓶中装培养基量为50ml时接菌量为4块菌饼(直径5mm)。另外,对酶的部分性质的研究结果表明,酶最适作用温度和pH分别为60℃和7.0,在50℃以下以及pH 5.5~7.5范围内稳定。  相似文献   
4.
Manganese lipoxygenase is secreted by the fungus Gaeumannomyces graminis. We expressed the enzyme in Pichia pastoris, which secreted approximately 30 mg Mn-lipoxygenase/L culture medium in fermentor. The recombinant lipoxygenase was N- and O-glycosylated (80-100 kDa), contained approximately 1 mol Mn/mol protein, and had similar kinetic properties (K(m) approximately 7.1 microM alpha-linolenic acid and V(max) 18 nmol/min/microg) as the native Mn-lipoxygenase. Mn-lipoxygenase could be quantitatively converted, presumably by secreted Pichia proteases, to a smaller protein (approximately 67 kDa) with retention of lipoxygenase activity (K(m) approximately 6.4 microM alpha-linolenic acid and V(max) approximately 12 nmol/min/microg). Putative manganese ligands were investigated by site-directed mutagenesis. The iron ligands of soybean lipoxygenase-1 are two His residues in the sequence HWLNTH, one His residue and a distant Asn residue in the sequence HAAVNFGQ, and the C-terminal Ile residue. The homologous sequences of Mn-lipoxygenase are H274VLFH278 and H462HVMN466QGS, respectively, and the C-terminal amino acid is Val-602. The His274Gln, His278Glu, His462Glu, and the Val-602 deletion mutants of Mn-lipoxygenase were inactive, and had lost >95% of the manganese content. His-463, Asn-466, and Gln-467 did not appear to be critical for Mn-lipoxygenase activity, as His463Gln, Asn466Gln, Asn466Leu, and Gln467Asn mutants metabolized alpha-linolenic acid to 11- and 13-hydroperoxylinolenic acids. We conclude that His-274, His-278, His-462, and Val-602 likely coordinate manganese.  相似文献   
5.
Summary Nuclear staining with acridine orange was used to assess cell viability in the cortex of wheat and barley seminal roots from glasshouse and field experiments. Results from this method correlated well with nuclear assessments made in unstained or Feulgen-stained roots, and other evidence is presented to support the validity of the method. The pattern of root cortex death (RCD) was similar in wheat and barley and consistent over a wide range of conditions. Behind the extending root tip and zone of nucleate root hairs, nuclei disappeared progressively from the outer five (of six) cortical cell layers of the root axes, starting in the epidermis. Stainable nuclei remained in the sixth cell layer, next to the endodermis, and in most cell layers around the bases of root laterals and in a small region immediately below the grain. The onset of cell death was apparently related more to the age of a root region than to its distance behind the root tip, and it was not closely correlated with endodermal or stelar development assessed by staining with phloroglucinol/HCl. The rate of RCD was much faster in wheat than barley in both glasshouse and field conditions, and faster in some spring wheat cultivars than in others in the glasshouse. RCD occurred in sterile vermiculite and perlite and was not enhanced by the presence of soil microorganisms; nor was it enhanced in soil by the addition of the non-pathogenic fungal parasitesPhialophora radicicola var..graminicola orMicrodochium bolleyi. RCD is suggested to be endogenously controlled by the amount of photosynthate reaching the cortex. Its implications for growth of soil microorganisms and especially for growth and biological control of root-infecting fungi are discussed.  相似文献   
6.
Putative biological and chemical treatments for controlling take-all were used in each of three consecutive years at two locations where winter wheat crops were grown in naturally-infested fields. The chemical treatments more often decreased take-all than the biological treatments, but no treatment consistently and significantly decreased take-all, nor did any cause a significant increase in yield. An isolate of Bacillus cereus var. mycoides and one of B. pumilis, applied as soil drenches in autumn or spring, or in the seed furrows, were usually ineffective. Of the few significant effects on disease, half were associated with increases and half with decreases, and most occurred in April and did not persist to late June. Two strains of Pseudomonas pluorescens applied to the seed were ineffective. The fungicide benomyl, applied as a drench in autumn and spring at 20 kg/ha was ineffective, while nuarimol, applied as a drench in autumn at 2 kg/ha was sometimes effective. Nuarimol incorporated into the seed bed at 2 kg/ha was the most effective treatment. In analyses using a functional relationship model for data from treated and untreated plots 12% of 176 data sets for biological treatments, 38% of 96 data sets for chemical treatments and 81% of 16 data sets for combined treatments showed increasing efficiency of the treatment with increasing disease intensity. These findings also demonstrate an additional advantage of the experimental design, namely that treatments are tested at different disease intensity levels within fields.  相似文献   
7.
本文就小麦全蚀病菌胞外-1,3-葡聚糖酶的产生和部分酶学特性进行了研究。结果表明,小麦全蚀病菌能够产生胞外-1,3-葡聚糖酶。在供试的三种培养基中,最佳产酶培养基为改进的MS培养基。当以改进的MS为基础培养基时,最佳碳源为麦麸皮;最佳氮源为牛肉浸膏;产酶的最适条件为培养基初始pH为6,培养温度为26℃,250ml三角瓶中装培养基量为50ml时接菌量为4块菌饼(直径5mm)。另外,对酶的部分性质的研究结果表明,酶最适作用温度和pH分别为60℃和7.0,在50℃以下以及pH 5.5~7.5范围内稳定。  相似文献   
8.
Summary The hypothesis that wheat plants deficient in managenese are predisposed to infection byGaeumannomyces graminis is outlined, and a test of the hypothesis in a soil system is reported. The results supported the hypothesis: wheat plants growing in managanese-deficient soil, although not showing foliar symptoms, were markedly more susceptible to infection; plant analysis confirmed the nutrient status of the plants. A review of the literature on take-all in wheat coupled with the results of our experiments suggests a reinterpretation of the etiology of this disease, since those edaphic factors which promote infection by this organism are those which also render managese unavailable to the host. Managenese nutrition is proposed as a common factor in many of the environmental conditions which influence the host-pathogen balance.  相似文献   
9.
Pseudomonas strain AN5 (Ps. str. AN5), a non-fluorescent Australian bacterial isolate, is an effective biological control (biocontrol) agent of the take-all disease of wheat caused by the fungus Gaeumannomyces graminis var. tritici (Ggt). Ps. str. AN5 controls Ggt by producing an antifungal compound which was purified by thin layer and column chromatography, and identified by NMR and mass spectroscopic analysis to be d-gluconic acid. Commercially bought pure gluconic acid strongly inhibited Ggt. Two different transposon mutants of Ps. str. AN5 which had lost take-all biocontrol did not produce d-gluconic acid. Gluconic acid production was restored, along with take-all biocontrol, when one of these transposon mutants was complemented with the corresponding open reading frame from wild-type genomic DNA. Gluconic acid was detected in the rhizosphere of wheat roots treated with the wild-type Ps. str. AN5, but not in untreated wheat or wheat treated with a transposon mutant strain which had lost biocontrol. The antifungal compounds phenazine-1-carboxylic acid and 2,4-diacetylphloroglucinol, produced by other Pseudomonads and previously shown to be effective in suppressing the take-all disease, were not detected in Ps. str. AN5 extracts. These results suggest that d-gluconic acid is the most significant antifungal agent produced by Ps. str. AN5 in biocontrol of take-all on wheat roots.  相似文献   
10.
Take-all disease, caused by Gaeumannomyces graminis var. tritici (Ggt), is one of the most serious root diseases in wheat production. In this study, a proteomic platform based on 2-dimensional gel electrophoresis (2-DE) and Matrix-Assisted Laser Desorption/Ionization Time of Flight Tandem Mass Spectrometry (MALDI-TOF/TOF MS) was used to construct the first proteome database reference map of G. graminis var. tritici and to identify the response of the pathogen to 2,4-diacetylphloroglucinol (DAPG), which is a natural antibiotic produced by antagonistic Pseudomonas spp. in take-all suppressive soils. For mapping, a total of 240 spots was identified that represented 209 different proteins. The most abundant biological function categories in the Ggt proteome were related to carbohydrate metabolism (21%), amino acid metabolism (15%), protein folding and degradation (12%), translation (11%), and stress response (10%). In total, 51 Ggt proteins were affected by DAPG treatment. Based on gene ontology, carbohydrate metabolism, amino acid metabolism, stress response, and protein folding and degradation proteins were the ones most modulated by DAPG treatment. This study provides the first extensive proteomic reference map constructed for Ggt and represents the first time that the response of Ggt to DAPG has been characterized at the proteomic level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号