首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2000年   1篇
  1997年   1篇
  1991年   2篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
The effects of tacrine (1,2,3,4-tetrahydro-9-aminoacridine) and 7-methoxytacrine on the metabolism of acetylcholine were investigated in experiments on prisms of rat cerebral cortex incubated in vitro in low-potassium (3 mmol/L K+) media; cholinesterases were inactivated by paraoxon to avoid any action of tacrine and methoxytacrine via their inhibition. Under "resting" conditions, tacrine and methoxytacrine increased the synthesis of unlabeled acetylcholine in the prisms; at the same time, they inhibited the uptake of [14C]choline from the medium and the synthesis of [14C]acetylcholine. The concentration of free choline was not increased by tacrine or methoxytacrine in either the tissue or the medium. The contradiction between the increased synthesis of unlabeled and the diminished synthesis of labeled acetylcholine indicates that the utilization of intracellular choline (which is presumably mobilized from intracellular choline esters) for the synthesis of acetylcholine is increased by tacrine and methoxytacrine. This conclusion is supported by the observation that the inhibition of acetylcholine synthesis during incubation with hemicholinium-3 (an inhibitor of choline transport into cholinergic nerve terminals) was overcome when tacrine was present simultaneously with hemicholinium-3. When the prisms were preincubated with [14C]choline and incubated with tacrine or methoxytacrine only after this, the amount of [14C]acetylcholine recovered in the tissue plus the medium was higher at the end of incubation with tacrine or methoxytacrine than without them, again suggesting that the drugs were able to increase the utilization of intracellular [14C]choline or its esters for acetylcholine synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
2.
The effects of the acetylcholinesterase inhibitors physostigmine and tacrine on alpha4beta2 and alpha4beta4 subtypes of neuronal nicotinic acetylcholine (ACh) receptors, expressed in Xenopus laevis oocytes, have been investigated. In voltage-clamp experiments low concentrations of physostigmine and tacrine potentiate ion currents induced by low concentrations of ACh, whereas at high concentrations they inhibit ACh-induced ion currents. These dual effects result in bell-shaped concentration-effect curves. Physostigmine and tacrine, by themselves, do not act as nicotinic receptor againsts. The larger potentiation is observed with 10 microM: physostigmine on alpha4beta4 nicotinic receptors and amounts to 70% at 1 microM: ACh. The mechanism underlying the effects of physostigmine on alpha4beta4 ACh receptors has been investigated in detail. Potentiation of ACh-induced ion current by low concentrations of physostigmine is surmounted at elevated concentrations of ACh, indicating that this is a competitive effect. Conversely, inhibition of ACh-induced ion current by high concentrations of physostigmine is not surmounted at high concentrations of ACh, and this effect appears mainly due to noncompetitive, voltage-dependent ion channel block. Radioligand binding experiments demonstrating displacement of the nicotinic receptor agonist (125)I-epibatidine from its recognition sites on alpha4beta4 ACh receptors by physostigmine confirm that physostigmine is a competitive ligand at these receptors. A two-site equilibrium receptor occupation model, combined with noncompetitive ion channel block, accounts for the dual effects of physostigmine and tacrine on ACh-induced ion currents. It is concluded that these acetylcholinesterase-inhibiting drugs interact with the ACh recognition sites and are coagonists of ACh on alpha4-containing nicotinic ACh receptors.  相似文献   
3.
Two acetylcholinesterase (AChE) inhibitors structurally related to Tacrine, 6-methoxytacrine (1a) and 9-heptylamino-6-methoxytacrine (1b), and their interaction with Electrophorus Electricus AChE were investigated. The complete assignment of the 1H and 13C NMR spectra of 1a and 1b was performed by mono-dimensional and homo- and hetero-correlated two-dimensional NMR experiments. This study was undertaken to elucidate the interaction modes between AChE and 1a and 1b in solution, using NMR. The interaction between the two inhibitors and AChE was studied by the analysis of the motional parameters non-selective and selective spin-lattice relaxation times, thereby allowing the motional state of 1a and 1b, both free and bound with AChE, to be defined. The relaxation data pointed out the ligands molecular moiety most involved in the binding with AChE. The relevant ligand/enzyme interaction constants were also evaluated for both compounds and resulted to be 859 and 5412M(-1) for 1a and1b, respectively.  相似文献   
4.
A new series of donepezil–tacrine hybrid related derivatives have been synthesised as dual acetylcholinesterase inhibitors that could bind simultaneously to the peripheral and catalytic sites of the enzyme. These new hybrids combined a tacrine, 6-chlorotacrine or acridine unit as catalytic binding site and indanone (the heterocycle present in donepezil) or phthalimide moiety as peripheral binding site of the enzyme, connected through a different linker tether length. One of the synthesised compounds emerged as a potent and selective AChE inhibitor, which is able to displace propidium in a competition assay. These results seem to confirm the ability of this inhibitor to bind simultaneously to both sites of the enzyme and make it a promising lead for developing disease-modifying drugs for the future treatment of Alzheimer’s disease. To gain insight into the molecular determinants that modulate the inhibitory activity of these compounds, a molecular modelling study was performed to explore their binding to the enzyme.  相似文献   
5.
In search of potent acetyl cholinesterase inhibitors with low hepatotoxicity for the treatment of Alzheimer’s disease, introduction of a chloro substitution to tacrine and some of its analogs has proven to be beneficial in maintaining or potentiating the cholinesterase inhibitory activity. Furthermore, it was found to be able to reduce the hepatotoxicity of the synthesized compounds, which is the main target of the study. Accordingly, a series of new 4-(chlorophenyl)tetrahydroquinoline derivatives, was synthesized and characterized. The synthesized compounds were evaluated for their in vitro and in vivo anti-cholinesterase activity using tacrine as a reference standard. Furthermore, they were investigated for their hepatotoxicity compared to tacrine. The obtained biological results revealed that all synthesized compounds displayed equivalent or significantly higher anti-cholinesterase activity and lower hepatotoxicity in comparison to tacrine. In addition, in silico drug-likeness of the synthesized compounds were predicted and their practical logP were assessed indicating that all synthesized compounds can be considered as promising hits/leads. Furthermore, docking study of the compound showing the highest in vitro anticholinesterase activity was performed and its binding mode was compared to that of tacrine.  相似文献   
6.
Abstract: In brain, the precursor of imidazoleacetic acid (IAA), a GABAA agonist but a GABAC antagonist, is not known. In the periphery, IAA derives from oxidation of histamine. But in brain, histamine is thought to be metabolized solely by histamine methyltransferase (HMT), forming tele -methylhistamine (t-MH) and tele -methylimidazoleacetic acid (t-MIAA). We showed that [3H]histamine (intracerebroventricularly) could be converted to IAA in brains of rats, a process increased by inhibition of HMT. This demonstrated that brain can oxidize histamine and suggested that endogenous histamine might also be oxidized if HMT activity were reduced. We examined, in rat cerebral cortex, effects of the following HMT inhibitors (mg/kg i.p.): metoprine (10), tacrine (10), velnacrine (10, 30), and physostigmine (1, 2). Tacrine was a potent inhibitor ( K i∼ 22 n M ). To measure histamine in tissue that contained HMT inhibitors, we developed a gas chromatography-mass spectrometry method. After 2 h, all drugs reduced endogenous levels of t-MH and t-MIAA and increased levels of histamine and IAA. Our results show that inhibition of HMT promotes oxidation of histamine in brain, probably by shunting histamine to an alternative metabolic pathway. Formation of IAA provides a novel interaction between histaminergic and GABAergic systems in brain. Accumulation of IAA should be considered when inhibitors of HMT are used to probe brain histamine function.  相似文献   
7.
A series of novel tacrine-isatin Schiff base hybrid derivatives (7a-p) were designed, synthesized and evaluated as multi-target candidates against Alzheimer’s disease (AD). The biological assays indicated that most of these compounds displayed potent inhibitory activity toward acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) and specific selectivity for AChE over BuChE. It was also found that they act as excellent metal chelators. The compounds 7k and 7m were found to be good inhibitors of AChE-induced amyloid-beta (Aβ) aggregation. Most of the compounds inhibited AChE with the IC50 values, ranging from 0.42 nM to 79.66 nM. Amongst them, 7k, 7m and 7p, all with a 6 carbon linker between tacrine and isatin Schiff base exhibited the strongest inhibitory activity against AChE with IC50 values of 0.42 nM, 0.62 nM and 0.95 nM, respectively. They were 92-, 62- and 41-fold more active than tacrine (IC50 = 38.72 nM) toward AChE. Most of the compounds also showed a potent BuChE inhibition among which 7d with an IC50 value of 0.11 nM for BuChE is the most potent one (56-fold more potent than that of tacrine (IC50 = 6.21 nM)). In addition, most compounds exhibited the highest metal chelating property. Kinetic and molecular modeling studies revealed that 7k is a mixed-type inhibitor, capable of binding to catalytic and peripheral site of AChE. Our findings make this hybrid scaffold an excellent candidate to modify current drugs in treating Alzheimer’s disease (AD).  相似文献   
8.
Five tacrine–ferulic acid hybrids (6a–e) were designed and synthesized as multi-potent anti-Alzheimer drug candidates. All target compounds have better acetylcholinesterase inhibitory activity and comparable butyrylcholinesterase inhibitory activity in relation to tacrine. Interestingly, 6d showed a reversible and non-competitive inhibitory action for acetylcholinesterase indicating interaction with the peripheral anionic site, whereas a reversible but competitive inhibitory action for butyrylcholinesterase. The antioxidant study revealed that four target compounds have, compared to Trolox, high ability to absorb reactive oxygen species.  相似文献   
9.
A series of tacrine-(β-carboline) hybrids (11aq) were designed, synthesized and evaluated as multifunctional cholinesterase inhibitors against Alzheimer’s disease (AD). In vitro studies showed that most of them exhibited significant potency to inhibit acetylcholinesterase (eeAChE and hAChE), butyrylcholinesterase (BuChE) and self-induced β-amyloid (Aβ) aggregation, Cu2+-induced Aβ (1–42) aggregation, and to chelate metal ions. Especially, 11l presented the greatest ability to inhibit cholinesterase (IC50, 21.6 nM for eeAChE, 63.2 nM for hAChE and 39.8 nM for BuChE), good inhibition of Aβ aggregation (65.8% at 20 μM) and good antioxidant activity (1.57 trolox equivalents). Kinetic and molecular modeling studies indicated that 11l was a mixed-type inhibitor, binding simultaneously to the catalytic anionic site (CAS) and the peripheral anionic site (PAS) of AChE. In addition, 11l could chelate metal ions, reduce PC12 cells death induced by oxidative stress and penetrate the blood–brain barrier (BBB). These results suggested that 11l might be an excellent multifunctional agent for AD treatment.  相似文献   
10.
Alzheimer’s disease (AD) is a complex neurological disorder with multiple inter-connected factors playing roles in the onset and progression of the disease. One strategy currently being explored for the development of new therapeutics for AD involves linking tacrine, a known acetylcholinesterase (AChE) inhibitor, to another drug to create bifunctional hybrids. The role and influence on activity of the linker moiety in these hybrids remains ill-defined. In this study, three series of 6-chlorotacrine with linkers varying in terminal functional group and length were synthesized, evaluated for AChE inhibition, and compared to tacrine and 6-chlorotacrine–mefenamic acid hybrids. Out of the compounds with terminal amine, methyl, and hydroxyl moieties tested, several highly potent molecules (low nanomolar IC50 values) comprised of linkers with terminal amines were identified. These 6-chlorotacrine with linkers were significantly more potent than tacrine alone and were often more potent than similar 6-chlorotacrine–mefenamic acid hybrids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号