首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   40篇
  2018年   3篇
  2017年   19篇
  2016年   3篇
  2015年   9篇
  2014年   6篇
  2013年   7篇
  2012年   11篇
  2011年   2篇
排序方式: 共有60条查询结果,搜索用时 96 毫秒
1.
Abstract

This paper describes the discovery of a novel free radical scavenger, 3-methyl-1-phenyl-2-pyrazolin-5-one (edaravone, 1), as a potent antioxidant agent against lipid peroxidation. The structure-activity relationship of edaravone indicated that lipophilic substituents were essential to show its lipid peroxidation-inhibitory activity. In vivo studies revealed that edaravone showed brain-protective activity in a transient ischemia model.  相似文献   
2.
The F1F0 ATP synthase has recently become the focus of anti‐cancer research. It was once thought that ATP synthases were located strictly on the inner mitochondrial membrane; however, in 1994, it was found that some ATP synthases localized to the cell surface. The cell surface ATP synthases are involved in angiogenesis, lipoprotein metabolism, innate immunity, hypertension, the regulation of food intake, and other processes. Inhibitors of this synthase have been reported to be cytotoxic and to induce intracellular acidification. However, the mechanisms by which these effects are mediated and the molecular pathways that are involved remain unclear. In this study, we aimed to determine whether the inhibition of cell proliferation and the induction of cell apoptosis that are induced by inhibitors of the cell surface ATP synthase are associated with intracellular acidification and to investigate the mechanism that underlines the effects of this inhibition, particularly in an acidic tumor environment. We demonstrated that intracellular acidification contributes to the cell proliferation inhibition that is mediated by cell surface ATP synthase inhibitors, but not to the induction of apoptosis. Intracellular acidification is only one of the mechanisms of ecto‐ATP synthase‐targeted antitumor drugs. We propose that intracellular acidification in combination with the inhibition of cell surface ATP generation induce cell apoptosis after cell surface ATP synthase blocked by its inhibitors. A better understanding of the mechanisms activated by ecto‐ATP synthase‐targeted cancer therapies may facilitate the development of potent anti‐tumor therapies, which target this enzyme and do not exhibit clinical limitations. J. Cell. Biochem. 114: 1695–1703, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
3.
4.
The involvement of Rho GTPases in major aspects of cancer development, such as cell proliferation, apoptosis, cell polarity, adhesion, migration, and invasion, have recently been attracting increasing attention. In this review, we have summarized the current findings in the literature, and we discuss the participation of the Rho GTPase members RhoA, Rac1, and Cdc42 in the development of colorectal cancer, the second most lethal neoplasia worldwide. First, we present an overview of the mechanisms of Rho GTPase regulation and the impact that regulator proteins exert on GTPase signaling. Second, we focus on the participation of Rho GTPases as modulators of colorectal cancer development. Third, we emphasize the involvement of activation and expression alterations of Rho GTPases in events associated with cancer progression, such as loss of cell-cell adhesion, proliferation, migration, and invasion. Finally, we highlight the potential use of novel anticancer drugs targeting specific components of the Rho GTPase signaling pathway with antineoplastic activity in this cancer type.  相似文献   
5.
Kinetic analysis of PFK-1 from rodent AS-30D, and human HeLa and MCF-7 carcinomas revealed sigmoidal [fructose 6-phosphate, Fru6P]-rate curves with different V(m) values when varying the allosteric activator fructose 2,6 bisphosphate (Fru2,6BP), AMP, Pi, NH(4)(+), or K(+). The rate equation that accurately predicted this behavior was the exclusive ligand binding concerted transition model together with non-essential hyperbolic activation. PFK-1 from rat liver and heart also exhibited the mixed cooperative-hyperbolic kinetic behavior regarding activators. Lowering pH induced decreased affinity for Fru6P, Fru2,6BP, citrate, and ATP (as inhibitor); as well as decreased V(m) and increased content of inactive (T) enzyme forms. High K(+) prompted increased (Fru6P) or decreased (activators) affinities; increased V(m); and increased content of active (R) enzyme forms. mRNA expression analysis and nucleotide sequencing showed that the three PFK-1 isoforms L, M, and C are transcribed in the three carcinomas. However, proteomic analysis indicated the predominant expression of L in liver, of M in heart and MCF-7 cells, of L>M in AS-30D cells, and of C in HeLa cells. PFK-1M showed the highest affinities for F6P and citrate and the lowest for ATP (substrate) and F2,6BP; PFK-1L showed the lowest affinity for F6P and the highest for F2,6BP; and PFK-1C exhibited the highest affinity for ATP (substrate) and the lowest for citrate. Thus, the present work documents the kinetic signature of each PFK-1 isoform, and facilitates the understanding of why this enzyme exerts significant or negligible glycolysis flux-control in normal or cancer cells, respectively, and how it regulates the onset of the Pasteur effect.  相似文献   
6.
7.
Photodynamic therapy (PDT) involves the systemic administration of a tumor-specific photosensitizer and local irradiation of visible light, can generate highly cytotoxic molecular species in the tumor and kill malignant cells directly or by shutting down the tumor microvasculature. Collectively data show that anti-tumor immunity is an important mechanism that mediates the PDT-induced tumor-destroying effects in many types of cancers. However, it is unknown whether PDT also promotes anti-tumor immunity in gliomas in the central nervous system (CNS). Here we show that the PDT generates regional and systemic anti-tumor immunity in mice with G422 gliomas in the brain. The infiltration of immune cells and the release of inflammatory factors, such as TNF-α and IFN-γ, are increased in animals with G422 gliomas following PDT when compared with those without receiving PDT. The lymphocytes that are isolated from PDT-treated mice are able to induce anti-tumor immunity in nude mice. The anti-glioma immunity fostered by PDT is inhibited in complement C3 knockout mice and the nude mice indicate the requirement of the activities of complement C3 and T cells. Thus, T cells that produce cytokines, along with complement C3, may play crucial roles in mediating PDT-induced anti-glioma responses.  相似文献   
8.
9.
10.
APC and PTEN are tumor suppressor proteins that bind through their C-termini to the PDZ domain containing-hDlg scaffolding protein. We have found that co-expression of PTEN and hDlg enhanced the negative regulation of the PI3K/Akt pathway by PTEN, indicating the physiologic importance of these interactions. APC and PTEN share other PDZ domain containing-interacting partners, including the MAGI scaffolding proteins and the MAST family of protein kinases. Mutational analysis revealed that the C-terminal PDZ-binding motifs from APC and PTEN were differentially recognized by distinct PDZ domains. APC bound to the three PDZ domains from hDlg, whereas PTEN mainly bound to PDZ-2/hDlg. This indicates the existence of overlapping, but distinct PDZ-domain recognition patterns by APC and PTEN. Furthermore, a ternary complex formed by APC, PTEN, and hDlg was detected, suggesting that hDlg may serve as a platform to bring in proximity APC and PTEN tumor suppressor activities. In line with this, tumor-related mutations targeting the PDZ-2/hDlg domain diminished its interaction with APC and PTEN. Our results expand the PDZ-domain counterparts for the tumor suppressor APC, show that APC and PTEN share PDZ-domain partners but have individual molecular determinants for specific recognition of PDZ domains, and suggest the participation of the tumor suppressors APC, PTEN, and hDlg in PDZ-domain interaction networks which may be relevant in oncogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号