首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2003年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Nilaparvata lugens, the brown planthopper (BPH) feeds on rice phloem sap, containing high amounts of sucrose as a carbon source. Nutrients such as sugars in the digestive tract are incorporated into the body cavity via transporters with substrate selectivity. Eighteen sugar transporter genes of BPH (Nlst) were reported and three transporters have been functionally characterized. However, individual characteristics of NlST members associated with sugar transport remain poorly understood. Comparative gene expression analyses using oligo-microarray and quantitative RT-PCR revealed that the sugar transporter gene Nlst16 was markedly up-regulated during BPH feeding. Expression of Nlst16 was induced 2 h after BPH feeding on rice plants. Nlst16, mainly expressed in the midgut, appears to be involved in carbohydrate incorporation from the gut cavity into the hemolymph. Nlst1 (NlHT1), the most highly expressed sugar transporter gene in the midgut was not up-regulated during BPH feeding. The biochemical function of NlST16 was shown as facilitative glucose transport along gradients. Glucose uptake activity by NlST16 was higher than that of NlST1 in the Xenopus oocyte expression system. At least two NlST members are responsible for glucose uptake in the BPH midgut, suggesting that the midgut of BPH is equipped with various types of transporters having diversified manner for sugar uptake.  相似文献   
2.
Trehalose is a promising natural cryoprotectant, but its cryoprotective effect is limited due to difficulties in transmembrane transport. Thus, expressing the trehalose transporter TRET1 on various mammalian cells may yield more trehalose applications. In this study, we ran comparative cryopreservation experiments between the TRET1-expressing CHO-K1 cells (CHO-TRET1) and the CHO-K1 cells transfected with an empty vector (CHO-vector). The experiments involve freezing under various trehalose concentrations in an extracellular medium. The freeze-thawing viabilities of CHO-TRET1 cells are higher than those of CHO-vector cells for most freezing conditions. This result differs from control experiments with a transmembrane type cryoprotectant, dimethyl sulfoxide (Me2SO), which had similar viabilities in each condition for both cell types. We conclude that the trehalose loaded into the cells with TRET1 significantly improves the cryoprotective effect. The higher viabilities occurred when the extracellular trehalose concentration exceeded 200 mM, with 250–500 mM being optimal, and a cooling rate below 30 K/min, with 5–20 K/min being optimal.  相似文献   
3.
We have recently described a biochemical detection method for peptide products of enzymatic reactions based on the formation of PDZ domain*peptide ligand complexes. The product sensor is based on using masked or cryptic PDZ domain peptide ligands as enzyme substrates. Upon enzymatic processing, a PDZ-binding motif is exposed, and the product sequence bound specifically by a Eu(3+)chelate-labeled GST-PDZ ([Eu(3+)]GST-PDZ). The practical applicability of this PDZ-based detection method is determined by the affinity of the PDZ domain*peptide ligand interaction, and the efficiency of the enzyme to process the masked peptide ligand. To expand the use of this PDZ-based detection strategy to a broader range of enzymatic assays, we have taken advantage of the plasticity in ligand recognition by the variety of PDZ domains found in nature. In the original work, the PDZ3 of PSD-95 was used, which preferentially recognizes the consensus sequence Ser-X-Val-COOH. Here, we show that NHERF PDZ1, which binds to the consensus sequence Thr/Ser-X-Leu-COOH, can be used to extend the flexibility in the recognition of the carboxy-terminal amino acid of the ligand, and monitor the enzymatic activity of HIV protease. The choices of detection format, for example, TRET or ALPHA, were also investigated and influenced assay design.  相似文献   
4.
Chinese hamster ovary cells (CHO–K1 cells) in which the trehalose transporter (TRET1) is expressed can have greater cryoprotection than ordinary CHO–K1 cells. This study examines the uptake characteristics of trehalose into cells via TRET1 and determines the influence of intracellular trehalose on the freeze–thaw viabilities. In our experiments, the intracellular trehalose concentration is controlled by the extracellular trehalose concentration and the immersion time in a freezing solution. In this freezing solution, both kinds of CHO–K1 cells are independently dispersed with various amount of trehalose, and then put into the CO2 incubator for 0–6 h. After a set immersion time, the cell-suspended sample is cooled to 193 K, stored for 1 week, then quickly thawed at 310 K and its viability measured. The uptake amount of intracellular trehalose is measured before freezing. We find an upper limit for the uptake amount of trehalose when the extracellular trehalose concentration is about 400 mM, at which the freeze–thaw viability is the highest. When the extracellular trehalose concentration exceeds 400 mM, shorter immersion times are needed to obtain the maximum freeze–thaw viability. Also, longer immersion weakens the cells. Our analyses indicate that when the extracellular trehalose-concentration is less than 400 mM, the trehalose uptake occurs more slowly with less dehydration, resulting in less stress on the cell. When the extracellular trehalose concentration exceeds the saturation level, the cell is stressed by the excess dehydration due to the remaining osmotic pressure, with apoptosis occurring before freezing.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号