首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   0篇
  国内免费   5篇
  2023年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2015年   2篇
  2014年   4篇
  2013年   3篇
  2011年   11篇
  2010年   1篇
  2009年   4篇
  2008年   5篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1992年   1篇
  1990年   1篇
  1987年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
1.
2.
The effect of adding low concentrations of a sediment/microbial community suspension to speed up the development of the denitrification capacity in the restored HSSF of a hybrid CW was studied during a one-year period after the filling of the horizontal filter with new light weight aggregates (LWA). Two HSSF filters with the same LWA substrate but different wastewater flow regimes were used as donor systems for the bioaugmentation. NO3-N concentrations in the outflows of all variants of studied MCs were significantly influenced by the time factor (p < 0.001, repeated measures ANOVA). Post hoc comparison indicated that MCs bioaugmented with the sediment suspension from a similar HSSF had significantly lower NO3-N concentrations than the control MCs (p < 0.05, Fisher LSD test), whereas MCs bioaugmented with the sediment suspension from a less similar HSSF did not show significant differences compared to the control MCs. This finding emphasizes the importance of the similarity of flow regime and water parameters in choosing a donor system for bioaugmentation. High variability of the effect of bioaugmentation shows that its importance for full scale operation may be overshadowed by the effect of other factors determining denitrification intensity.  相似文献   
3.
Ma Y  Huang M  Wan J  Wang Y  Sun X  Zhang H 《Bioresource technology》2011,102(6):4410-4415
A laboratory-scale anaerobic-anoxic-oxic (AAO) system was established to investigate the fate of DnBP. A removal kinetic model including sorption and biodegradation was formulated, and kinetic parameters were evaluated with batch experiments under anaerobic, anoxic, oxic conditions. However, it is highly complex and is difficult to confirm the kinetic parameters using conventional mathematical modeling. To correlate the experimental data with available models or some modified empirical equations, an artificial neural network model based on multilayered partial recurrent back propagation (BP) algorithm was applied for the biodegradation of DnBP from the water quality characteristic parameters. Compared to the kinetic model, the performance of the network for modeling DnBP is found to be more impressive. The results showed that the biggest relative error of BP network prediction model was 9.95%, while the kinetic model was 14.52%, which illustrates BP model predicting effluent DnBP more accurately than kinetic model forecasting.  相似文献   
4.
The protozoan community in eleven activated sludge wastewater treatment plants (WWTPs) in the greater Dublin area has been investigated and correlated with key physio-chemical operational and effluent quality parameters. The plants represented various designs, including conventional and biological nutrient removal (BNR) systems. The aim of the study was to identify differences in ciliate community due to key design parameters including anoxic/anaerobic stages and to identify suitable bioindicator species for performance evaluation. BNR systems supported significantly different protozoan communities compared to conventional systems. Total protozoan abundance was reduced in plants with incorporated anoxic and anaerobic stages, whereas species diversity was either unaffected or increased. Plagiocampa rouxi and Holophrya discolor were tolerant to anoxic/anaerobic conditions and associated with high denitrification. Apart from process design, influent wastewater characteristics affect protozoan community structure. Aspidisca cicada was associated with low dissolved oxygen and low nitrate concentrations, while Trochilia minuta was indicative of good nitrifying conditions and good sludge settleability. Trithigmostoma cucullulus was sensitive to ammonia and phosphate and could be useful as an indicator of high effluent quality. The association rating assessment procedure of Curds and Cockburn failed to predict final effluent biological oxygen demand (BOD5) indicating the method might not be applicable to treatment systems of different designs.  相似文献   
5.
Dry and wet sludge samples were collected from the sewage sludge storage site and primary treatment ponds at As-Samra Wastewater Treatment Ponds in Al Hayshmia, Jordan. The concentrations of polynuclear aromatic hydrocarbons (PAH) and macro- and microelements were determined using gas chromatography-mass spectrometry (GC-MS) and inductively coupled plasma-mass spectrometry (ICP-MS), respectively.

Environmentally relevant concentrations of PAH were detected ranging from 62 μg g?1 to 70 μg g?1 for dry sludge and from 35 μg g?1 to 47 μg g?1 for wet sludge. These results indicated a potential environmental risk if sewage sludge is reused in Jordan as organic fertilizer without first being treated. The results of the study showed that the sewage sludge samples were contaminated with low levels of heavy metals, as the dry sludge samples were characterized by higher concentrations of most analyzed elements than for wet sludge samples. Still, none of the trace metal concentrations exceeded the threshold concentration levels for agricultural-related sludge.

Unlike many other nutrients found in sludge, the Total Organic Carbon (TOC%) found in dry and wet sludge revealed similar values, at 13.18 percent and 13.29 percent, respectively. The total phosphorus ranged from 0.25% for dry sludge to 0.47% for wet sludge. Total nitrogen varied from 0.80% for wet sludge to 1.01% for the dry sludge samples. The overall nutrients levels are close to those found in the literature. The findings of this study have improved the understanding of sewage sludge characteristics in a semiarid environment.  相似文献   

6.
The natural preindustrial ANC and pH decline associated with 22 melt events from 11 streams during spring flood of 1997 and 1998 in Northern Sweden have been assessed using the Boreal Dilution Model (BDM). The results show that the spring flood pH decline of 0.5 to 2.5 pH units in the streams was largely caused by natural processes. The most important driving factors influencing pH were TOC increase in combination with ANC dilution. The study also demonstrates that pH in some streams can decline to pH values close to 4.5 as a result of natural processes alone. In general the anthropogenic component of the pH decline was between 0.1 and 0.3 pH units superimposed on the natural pH decline. Furthermore, the anthropogenic contribution to ANC and pH decline generally followed the gradient of anthropogenic S deposition in the region. The sites with the greatest inferred anthropogenic influence are also those for which the assumptions used in the BDM were most sensitive. Nevertheless, the results from this study suggest that the regional impact of anthropogenic acid deposition on the ANC and pH in northern Sweden is currently limited.  相似文献   
7.
Subcellular organelles in eukaryotes are surrounded by lipid membranes.In an endomembrane system,vesicle trafficking is the primary mechanism for the delivery of organellar proteins to specific organelles.However,organellar proteins for chloroplasts,mitochondria,the nucleus,and peroxisomes that are translated in the cytosol are directly imported into their target organelles.Chloroplasts are a plant-specific organelle with outer and inner envelope membranes,a dual-membrane structure that is simil...  相似文献   
8.
Based on theories of mire development and responses to a changing climate, the current role of mires as a net carbon sink has been questioned. A rigorous evaluation of the current net C-exchange in mires requires measurements of all relevant fluxes. Estimates of annual total carbon budgets in mires are still very limited. Here, we present a full carbon budget over 2 years for a boreal minerogenic oligotrophic mire in northern Sweden (64°11′N, 19°33′E). Data on the following fluxes were collected: land–atmosphere CO2 exchange (continuous Eddy covariance measurements) and CH4 exchange (static chambers during the snow free period); TOC (total organic carbon) in precipitation; loss of TOC, dissolved inorganic carbon (DIC) and CH4 through stream water runoff (continuous discharge measurements and regular C-concentration measurements). The mire constituted a net sink of 27±3.4 (±SD) g C m−2 yr−1 during 2004 and 20±3.4 g C m−2 yr−1 during 2005. This could be partitioned into an annual surface–atmosphere CO2 net uptake of 55±1.9 g C m−2 yr−1 during 2004 and 48±1.6 g C m−2 yr−1 during 2005. The annual NEE was further separated into a net uptake season, with an uptake of 92 g C m−2 yr−1 during 2004 and 86 g C m−2 yr−1 during 2005, and a net loss season with a loss of 37 g C m−2 yr−1 during 2004 and 38 g C m−2 yr−1 during 2005. Of the annual net CO2-C uptake, 37% and 31% was lost through runoff (with runoff TOC>DIC≫CH4) and 16% and 29% through methane emission during 2004 and 2005, respectively. This mire is still a significant C-sink, with carbon accumulation rates comparable to the long-term Holocene C-accumulation, and higher than the C-accumulation during the late Holocene in the region.  相似文献   
9.
10.
Here, we use a unique long‐term data set on total organic carbon (TOC) fluxes, its climatic drivers and effects of land management from a large boreal watershed in northern Finland. TOC and runoff have been monitored at several sites in the Simojoki watershed (3160 km2) since the early 1960s. Annual TOC fluxes have increased significantly together with increased inter‐annual variability. Acid deposition in the area has been low and has not significantly influenced losses of TOC. Forest management, including ditching and clear felling, had a minor influence on TOC fluxes – seasonal and long‐term patterns in TOC were controlled primarily by changes in soil frost, seasonal precipitation, drought, and runoff. Deeper soil frost led to lower spring TOC concentrations in the river. Summer TOC concentrations were positively correlated with precipitation and soil moisture not temperature. There is some indication that drought conditions led to elevated TOC concentrations and fluxes in subsequent years (1998–2000). A sensitivity analysis of the INCA‐C model results showed the importance of landscape position, land‐use type, and soil temperature as controls of modeled TOC concentrations. Model predictions were not sensitive to forest management. Our results are contradictory to some earlier plot‐scale and small catchment studies that have shown more profound forest management impacts on TOC fluxes. This shows the importance of scale when assessing the mechanisms controlling TOC fluxes and concentrations. The results highlight the value of long‐term multiple data sets to better understand ecosystem response to land management, climate change and extremes in northern ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号