首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1295篇
  免费   20篇
  国内免费   30篇
  2023年   21篇
  2022年   27篇
  2021年   29篇
  2020年   42篇
  2019年   87篇
  2018年   50篇
  2017年   29篇
  2016年   25篇
  2015年   27篇
  2014年   116篇
  2013年   113篇
  2012年   75篇
  2011年   120篇
  2010年   57篇
  2009年   63篇
  2008年   55篇
  2007年   55篇
  2006年   56篇
  2005年   62篇
  2004年   41篇
  2003年   36篇
  2002年   29篇
  2001年   2篇
  2000年   7篇
  1999年   9篇
  1998年   7篇
  1997年   10篇
  1996年   11篇
  1995年   6篇
  1993年   6篇
  1992年   4篇
  1991年   5篇
  1990年   5篇
  1989年   11篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   5篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   4篇
  1977年   3篇
  1976年   1篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
排序方式: 共有1345条查询结果,搜索用时 15 毫秒
1.
Anti-TNF biologics have achieved great success in the treatment of autoimmune diseases and have been the most selling biologics on market. However, the anti-TNF biologics have shown some disadvantages such as poor efficacy to some patients and high risk of infection and malignancies during clinical application. Current anti-TNF biologics are antibodies or antibody fragments that bind to TNF-α and subsequently block both TNF-TNFR1 and TNF-TNFR2 signaling. Transgenic animal studies indicate that TNFR1 signaling is responsible for chronic inflammation and cell apoptosis whereas TNFR2 signaling regulates tissue regeneration and inflammation. Recent studies propose to selectively inhibit TNFR1 to enhance efficacy and avoid side effects. In this review, we introduce the biology of TNF-TNFR1 and TNF-TNFR2 signaling, the advantages of selective inhibition of TNF-TNFR1 signaling and research updates on the development of selective inhibitors for TNF-TNFR1 signaling. Antibodies, small molecules and aptamers that selectively inhibit TNFR1 have showed therapeutic potential and less side effects in preclinical studies. Development of selective inhibitors for TNFR1 is a good strategy to enhance the efficacy and reduce the side effects of anti-TNF inhibitors and will be a trend for next-generation of anti-TNF inhibitors.  相似文献   
2.
Nine novel 4-[3-(4-Dimethylamino-phenyl)-5-aryl-4,5-dihydro-pyrazol-1-yl]-benzenesulfonamides (2a-i) were synthesized and evaluated for their anti-inflammatory and antiproliferative activities. These compounds (2a-i) showed moderate to strong anti-inflammatory activity in carrageenan rat paw oedema test. Compounds 2b, 2d and 2g showing comparable anti-inflammatory activity to that of reference drug celecoxib were evaluated for their ulcerogenic and analgesic activities. The effect of 2b, 2d and 2g on the content of NO, TNF-α and PGE2 in exudates from rat paw stimulated by carrageenan was also evaluated. The compound 2c showed considerable antitumor activities against all 60 human tumor cell lines with effective GI50 (MG-MID) value of 3.63 µM. It exhibited maximum activity against melanoma (LOX IMVI and SK-MEL-5) cancer cell lines with GI50 value less than 2 μM.  相似文献   
3.
Toxic peptides II-9.2.2 and II-10, purified from Centruroides noxius venom, bear highly homologous N-terminal amino acid sequences, and both toxins are lethal to mice. However, only toxin II-10 is active on the voltage-clamped squid axon, selectively decreasing the voltage-dependent Na+ current. Here, we have tested toxins II-9 and II-10 on synaptosomes from mouse brain: both toxins increased the release of gamma-[3H]aminobutyric acid ([3H]GABA). Their effect was completely blocked by tetrodotoxin or by the absence of external Na+. Also, both toxins increased Na+ permeability in isolated nerve terminals. Besides the observation that toxin II-9 is active on synaptosomes, the effect of toxin II-10 in this preparation is opposite to that observed in the squid axon. Thus, our results reflect functional differences between the populations of Na+ channels in mouse brain synaptosomes and in the squid axon. The release of GABA evoked by these toxins from synaptosomes required external Ca2+ and was blocked by Ca2+ channel blockers (verapamil and Co2+). This latter observation is in sharp contrast to the releasing action of veratrine, which evoked release even in the absence of external Ca2+. Furthermore, the action of both C. noxius toxins was potentiated by veratrine, a result suggesting they have different mechanisms of action. Among drugs that release neurotransmitters by increasing Na+ permeability, it is noteworthy that scorpion toxins are the only ones yet reported to have a strict requirement for external Ca2+.  相似文献   
4.
Lai Yeap Foo 《Phytochemistry》1984,23(12):2915-2918
The flavonoids and condensed tannins of the heartwood of Acacia baileyana var. purpurea are described. In conformity with other Acacia species, the hydroxylation pattern of the flavonoids is of the resorcinol type but, in sharp contrast, the tannins are heterogeneous consisting of a mixture of the resorcinol and phtoroglucinol series. Dimeric proanthocyanidins of the phloroglucinol type were absent and this exception to the general observation that they invariably co-occur with the polymers may be explained by the relative nucleophilicity of the aromatic A-rings.  相似文献   
5.
The ionic requirements for K+-evoked efflux of endogenous taurine from primary cerebellar astrocyte cultures were studied. The Ca2+ ionophore A23187 evoked taurine efflux in a dose-dependent fashion with a time-course identical to that of K+-induced efflux. The Ca2+-channel antagonist nifedipine had no effect upon efflux induced by 10 or 50 mM K+. In addition, verapamil did not antagonize 50 mM K+-evoked efflux except at high, non-pharmacological concentrations (>100 M), and preincubation with 2 M -conotoxin had no effect on 50 mM K+-evoked efflux. Similarly, preincubation with 1 mM ouabain had no effect on the amount of taurine released by K+ stimulation, but did accelerate the onset of efflux by 2–4 min. Although 2 M tetrodotoxin had no effect on K+-evoked release, replacing Na+ with choline abolished the taurine efflux seen in response to K+ stimulation. Together, these findings suggest that neuronal N- and L-type Ca2+- and voltage-dependent Na+-channels are not involved in the influx of Ca2+ which appears to be necessary for K+-evoked taurine efflux, and that in addition to Ca2+, extracellular Na+ is also required.  相似文献   
6.
The previous observation that a continuous chemical depolarization of aggregating rat brain cells with KCl alters the expression of opioid receptors was examined in more detail. In contrast to its significant and converse effect on forebrain and hindbrain cells cultured in serum-containing medium, KCl had only a small and transient effect in serum-free cultures of both types. The basal receptor density in serum-free cultures was similar to the receptor density in KCl-treated serum-containing cultures, but medium conditioned by glial cells restored partially the effect of KCl in serum-free cultures. The effect of KCl in serum-containing forebrain cultures was enhanced by the voltage-dependent calcium channel blocker verapamil, and magnesium and cadmium had a similar, though smaller, effect. The sodium channel activator veratridine had a profound and dose-dependent inhibitory effect on the expression of the receptors in forebrain and hindbrain cultures, and tetrodotoxin blocked the veratridine effect. Information about the selectivity of the effect of neuronal activation on the various opioid receptor subtypes was obtained with the neuroblastoma X glioma hybrid M8 cells that possess only delta type opioid receptors. A Scatchard analysis of [3H]etorphine binding to these cells has shown that depolarization increased the Bmax, but had little, if any, effect on the affinity (KD) of the ligand to the receptors. The significance of depolarization and voltage-dependent sodium and calcium channels on the expression of different opioid receptor subtypes is discussed.  相似文献   
7.
Cultures of fetal rat dorsal root ganglion neurons (7 days in culture) were prelabeled with myo-[3H]inositol or [3H]arachidonic acid for 24 h and stimulated with 10 microM bradykinin for time intervals of 5-300 s. The incubation was terminated by addition of 5% perchloric acid to extract inositol phosphates or organic solvent to extract lipids. Inositol phosphates were resolved by anion-exchange HPLC; lipids were resolved by TLC. Bradykinin stimulation resulted in a 10-fold increased accumulation of inositol 1,4,5-trisphosphate (IP3) and inositol bisphosphate (IP2) (fivefold) by 5 s. The increase in IP3 was transient (half maximal by 1 min), whereas stimulated IP2 levels were sustained for several minutes. Even longer term increases were observed in inositol monophosphate. Stimulation also resulted in a threefold increase in arachidonic acid which was preceded by transient increases in diacylglycerol (twofold) and arachidonoyl-monoacylglycerol (threefold). The temporal lag in the accumulation of arachidonic acid with respect to diglyceride and monoglyceride suggested the involvement of di- and monoglyceride lipases in arachidonic acid mobilization. A role for phospholipase A2 is also possible, because pretreatment of cultures with quinacrine partially blocked arachidonic acid release. Bradykinin-stimulated arachidonic acid release was decreased in the presence of calcium channel blockers nifedipine or verapamil (50 microM), or EDTA (2.5 mM). The role of calcium was verified further in that accumulation of phosphatidic acid, diacylglycerol, and arachidonic acid was maximally stimulated by treatment with the calcium ionophore A23187 (20 microM).  相似文献   
8.
The present study was undertaken to investigate the role of calcium ions (Ca2+) in the induction and secretion of the dengue type 2 virus induced cytotoxic factor and the cytotoxin. This was done by using calcium channel blocking drugs such as verapamil, nifedipine or diltiazem hydrochloride. The production of cytotoxic factor was significantly reduced by treatment of dengue type 2 virus infected mice with verapamil. Similarly, a dosedependent inhibition of the secretion of cytotoxic factor was observed, when spleen cells of the virus-primed mice were treatedin vitro with the 3 calcium channel blockers. The production of cytotoxin by macrophages was abrogated by pretreatment with calcium channel blockers but had little effect on its secretion as shown by treatment of macrophages with verapamil at 1 h after the induction to later periods up to 18 h. The findings thus show that in the induction of both the cytokines Ca2+ plays a critical role; on the other hand it is required for the secretion of the cytotoxic factor but not for that of the cytotoxin.  相似文献   
9.
High-conductance calcium-activated potassium (maxi-K) channels comprise a specialized family of K+ channels. They are unique in their dual requirement for depolarization and Ca2+ binding for transition to the open, or conducting, state. Ion conduction through maxi-K channels is blocked by a family of venom-derived peptides, such as charybdotoxin and iberiotoxin. These peptides have been used to study function and structure of maxi-K channels, to identify novel channel modulators, and to follow the purification of functional maxi-K channels from smooth muscle. The channel consists of two dissimilar subunits, and . The subunit is a member of theslo Ca2+-activated K+ channel gene family and forms the ion conduction pore. The subunit is a structurally unique, membrane-spanning protein that contributes to channel gating and pharmacology. Potent, selective maxi-K channel effectors (both agonists and blockers) of low molecular weight have been identified from natural product sources. These agents, together with peptidyl inhibitors and site-directed antibodies raised against and subunit sequences, can be used to anatomically map maxi-K channel expression, and to study the physiologic role of maxi-K channels in various tissues. One goal of such investigations is to determine whether maxi-K channels represent novel therapeutic targets.  相似文献   
10.
To determine possible sources of Ca2+ during excitation-contraction coupling in smooth muscle, a vibrating Ca2+-selective electrode was used to measure Ca2+ flux during the process of contraction. The smooth muscle model was the longitudinal muscle of the body wall of a sea cucumberSclerodactyla briareus. Because acetylcholine caused slow contractions of the muscle that were inhibited by Ca2+ channel blockers diltiazem and verapamil in earlier mechanical studies, we chose a vibrating Ca2+-selective electrode as our method to test the hypothesis that acetylcholine may be stimulating Ca2+ influx across the sarcolemma, providing a Ca2+ source during excitation-contraction coupling. Acetylcholine treatment stimulated a net Ca2+ efflux that was both dose and time dependent. We then tested two L-type Ca2+ channel blockers, diltiazem and verapamil, and two non-specific Ca2+ blockers, cobalt (Co2+) and lanthanum (La3+) on acetylcholine-induced Ca2+ flux. All four Ca2+ blockers tested potently inhibited Ca2+ efflux induced by physiological doses of acetylcholine. We propose that the acetylcholine-induced Ca2+ efflux was the result of, first, Ca2+ influx through voltage-sensitive L-type Ca2+ channels, then the rapid extrusion of Ca2+ by an outwardly directed carrier such as the Na–Ca exchanger as suggested by Li+ substitution experiments. The vibrating Ca2+ electrode has provided new insights on the active and complex role the sarcolemma plays in Ca2+ homeostasis and regulating Ca2+ redistribution during excitation-contraction coupling.Abbreviations ACh acetylcholine - E-C coupling excitation-contraction coupling - LMBW longitudinal muscle of the body wall  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号