首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   5篇
  国内免费   2篇
  2023年   8篇
  2022年   5篇
  2021年   3篇
  2020年   5篇
  2019年   9篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2014年   4篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  1997年   1篇
排序方式: 共有48条查询结果,搜索用时 78 毫秒
1.
An important challenge for proteomics is the ability to compare protein levels across biological samples. Since their introduction, isotopic and isobaric peptide labeling have played an important role in relative quantitative comparisons of proteomes. One important drawback of most of the isotopic-labeling techniques is an increase in sample complexity. This problem was successfully addressed with the construction of isobaric labeling strategies, such as isobaric tag for relative and absolute quantification (iTRAQ), tandem mass tagging, the cleavable isobaric affinity tag, dimethylated leucines and isobaric peptide termini labeling. Furthermore, numerous applications for multiplexing using iTRAQ and tandem mass tagging have been reported.  相似文献   
2.
Reproduction, as a physiologically complex process, can significantly affect the development of the sheep industry. However, a lack of overall understanding to sheep fecundity has long blocked the progress in sheep breeding and husbandry. In the present study, the aim is to identify differentially expressed proteins (DEPs) from hypothalamus in sheep without FecB mutation in two comparison groups: polytocous (PF) versus monotocous (MF) sheep at follicular phase and polytocous (PL) versus monotocous (ML) sheep at luteal phase. Totally 5058 proteins are identified in sheep hypothalamus, where 22 in PF versus MF, and 39 proteins in PL versus ML are differentially expressed, respectively. A functional analysis is then conducted including Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis to reveal the potential roles of these DEPs. The proteins ENSOARP00000020097, ENSOARP00000006714, growth hormone (GH), histone deacetylase 4 (HDAC4), and 5′‐3′ exoribonuclease 2 (XRN2) in PF versus MF, and bcl‐2‐associated athanogene 4 (BAG4), insulin‐like growth factor‐1 receptor (IGF1R), hydroxysteroid 11‐beta dehydrogenase 1 (HSD11B1), and transthyretin (TTR) in PL versus ML appear to modulate reproduction, presumably by influencing the activities of gonadotropin‐releasing hormone (GnRH). This study provides an alternative method to identify DEPs associated with sheep prolificacy from the hypothalamus. The mass spectrometry data are available via ProteomeXchange with identifier PXD013822.  相似文献   
3.
  1. Download : Download high-res image (74KB)
  2. Download : Download full-size image
Highlights
  • •Bayesian Beta-Binomial model integrates ion statistics with peptide ratio agreement.
  • •Model appropriately interprets information from low signal peptides.
  • •Confidence can be assigned even without replicates.
  • •Model adds sensitivity to detection of small changes.
  相似文献   
4.
  1. Download : Download high-res image (139KB)
  2. Download : Download full-size image
Highlights
  • •Quantitative microproteomics to study the CNS and PNS of the Twitcher mouse.
  • •10plex TMT experiments on corpus callosum, motor cortex and sciatic nerves extracts.
  • •More than 400 proteins groups deregulated between Twitcher and wildtype mice.
  • •New insights into the molecular mechanisms of Krabbe disease.
  相似文献   
5.
Electromagnetic fields (EMFs) are reported to interfere with chemical reactions involving free radical production. Coenzyme Q10 (CoQ10) is a strong antioxidant with some neuroprotective activities. The purpose of this study was to examine and compare the neuroprotective effects of EMF and CoQ10 in a mouse model of hippocampal injury. Hippocampal injury was induced in mature female mice (25–30 g), using an intraperitoneal injection of trimethyltin hydroxide (TMT; 2.5 mg/kg). The experimental groups were exposed to EMF at a frequency of 50 Hz and intensity of 5.9 mT for 7 hr daily over 1 week or treated with CoQ10 (10 mg/kg) for 2 weeks following TMT injection. A Morris water maze apparatus was used to assess learning and spatial memory. Nissl staining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) tests were also performed for the histopathological analysis of the hippocampus. Antiapoptotic genes were studied, using the Western blot technique. The water maze test showed memory improvement following treatment with CoQ10 and coadministration of CoQ10 + EMF. The Nissl staining and TUNEL tests indicated a decline in necrotic and apoptotic cell count following treatment with CoQ10 and coadministration of CoQ10 + EMF. The Western blot study indicated the upregulation of antiapoptotic genes in treatment with CoQ10, as well as coadministration. Also, treatment with EMF had no significant effects on reducing damage induced by TMT in the hippocampus. According to the results, EMF had no significant neuroprotective effects in comparison with CoQ10 on hippocampal injury in mice. Nevertheless, coadministration of EMF and CoQ10 could improve the neuroprotective effects of CoQ10.  相似文献   
6.
Qu M  Zhou Z  Chen C  Li M  Pei L  Chu F  Yang J  Wang Y  Li L  Liu C  Zhang L  Zhang G  Yu Z  Wang D 《Neurochemistry international》2011,59(8):1095-1103
Lycopene is a potent free radicals scavenger with demonstrated protective efficacy in several experimental models of oxidative damage. Trimethyltin (TMT) is an organotin compound with neurotoxic effects on the hippocampus and other limbic structures and is used to model neurodegenerative diseases targeting these brain areas. Oxidative stress is widely accepted as a central pathogenic mechanism of TMT-mediated neurotoxicity. The present study investigated whether the plant carotene lycopene protects against TMT-induced neurotoxicity in primary cultured rat hippocampal neurons. Lycopene pretreatment improved cell viability in TMT-treated hippocampal neurons and inhibited neuronal apoptosis. Microfluorometric imaging revealed that lycopene inhibited the accumulation of mitochondria-derived reactive oxygen species (ROS) during TMT exposure. Moreover, lycopene ameliorated TMT-induced activation of the mitochondrial permeability transition pore (mPTP) and the concomitant depolarization of the mitochondrial membrane potential (ΔΨm). Consequently, cytochrome c release from the mitochondria and ensuing caspase-3 activation were markedly reduced. These findings reveal that lycopene protects against TMT-induced neurotoxicity by inhibiting the mitochondrial apoptotic pathway. The anti-apoptotic effect of lycopene on hippocampal neurons highlights the therapeutic potential of plant-derived antioxidants against neurodegenerative diseases.  相似文献   
7.
Nicotinic acetylcholine receptors (nAChR), the primary cell surface targets of nicotine, have implications in various neurological disorders. Here we investigate the proteome‐wide effects of nicotine on human haploid cell lines (wildtype HAP1 and α7KO‐HAP1) to address differences in nicotine‐induced protein abundance profiles between these cell lines. We performed an SPS‐MS3‐based TMT10‐plex experiment arranged in a 2‐3‐2‐3 design with two replicates of the untreated samples and three of the treated samples for each cell line. We quantified 8775 proteins across all ten samples, of which several hundred differed significantly in abundance. Comparing α7KO‐HAP1 and HAP1wt cell lines to each other revealed significant protein abundance alterations; however, we also measured differences resulting from nicotine treatment in both cell lines. Among proteins with increased abundance levels due to nicotine treatment included those previously identified: APP, APLP2, and ITM2B. The magnitude of these changes was greater in HAP1wt compared to the α7KO‐HAP1 cell line, implying a potential role for the α7 nAChR in HAP1 cells. Moreover, the data revealed that membrane proteins and proteins commonly associated with neurons were predominant among those with altered abundance. This study, which is the first TMT‐based proteome profiling of HAP1 cells, defines further the effects of nicotine on non‐neuronal cellular proteomes.  相似文献   
8.
9.
Type 1 diabetes (T1D) is an autoimmune disorder resulting from a self‐destruction of pancreatic islet beta cells. The complete proteome of the human pancreas, where both the dysfunctional beta cells and their proximal environment co‐exist, remains unknown. Here, we used TMT10‐based isobaric labeling and multidimensional LC‐MS/MS to quantitatively profile the differences between pancreatic head region tissues from T1D (N = 5) and healthy subjects (N = 5). Among the 5357 (1% false discovery rate) confidently identified proteins, 145 showed statistically significant dysregulation between T1D and healthy subjects. The differentially expressed pancreatic proteome supports the growing notion of a potential role for exocrine pancreas involvement in T1D. This study also demonstrates the utility for this approach to analyze dysregulated proteins as a means to investigate islet biology, pancreatic pathology and T1D pathogenesis.  相似文献   
10.
Crohn's disease (CD) is a chronic condition characterized by recurrent flares of inflammation in the gastrointestinal tract. Disease etiology is poorly understood and is characterized by dysregulated immune activation that progressively destroys intestinal tissue. Key cellular compartments in disease pathogenesis are the intestinal epithelial layer and its underlying lamina propria. While the epithelium contains predominantly epithelial cells, the lamina propria is enriched in immune cells. Deciphering proteome changes in different cell populations is important to understand CD pathogenesis. Here, using isobaric labeling-based quantitative proteomics, we perform an exploratory study to analyze in-depth proteome changes in epithelial cells, immune cells and stromal cells in CD patients compared to controls using cells purified by FACS. Our study revealed increased proteins associated with neutrophil degranulation and mitochondrial metabolism in immune cells of CD intestinal mucosa. We also found upregulation of proteins involved in glycosylation and secretory pathways in epithelial cells of CD patients, while proteins involved in mitochondrial metabolism were reduced. The distinct alterations in protein levels in immune- versus epithelial cells underscores the utility of proteome analysis of defined cell types. Moreover, our workflow allowing concomitant assessment of cell-type specific changes on an individual basis enables deeper insight into disease pathogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号