首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
  国内免费   2篇
  2022年   1篇
  2020年   2篇
  2017年   2篇
  2015年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2007年   3篇
  2006年   1篇
  2004年   1篇
  1997年   2篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
Yong Di  Jun Tian  Pu Yang  Shen Qu 《FEBS letters》2010,584(15):3469-24475
Very low density lipoprotein receptors (VLDLR) including type I and type II are known to affect cell functions by binding to its extracellular ligands. However, the effect of these ligands on VLDLR expression remains elusive. Tissue factor pathway inhibitor (TFPI) and urokinase plasminogen activator and plasminogen activator inhibitor 1 (uPA-PAI-1) complex, two ligands of VLDLR, were used to examine their effects on VLDLR expression. TFPI treatment decreased type II VLDLR expression, inhibited cell proliferation and migration, and degradated β-catenin in SGC7901 cells. However, uPA-PAI-1 complex, increased type II VLDLR expression with promoted cell proliferation and migration and stabilization of β-catenin. These results indicated that extracellular ligands can change the expression of type II VLDLR to affect cell proliferation and migration.  相似文献   
2.
人组织因子途径抑制物(TFPI)是一种体内天然存在的外源性凝血途径特异性抑制物。缺失突变体TFPI1-161包括TFPI的N末端、K1和K2结构域,是一种研究TFPi结构与功能及其相互关系的理想对照分子。以克隆质粒pGEM-3Zf(-)-TFPi为模板,用PCR方法获得TFPI1-161基因,构建表达质粒pPIC9K-TFPi1-161并转化毕赤酵母GS115。通过筛选多拷贝转化子及优化发酵培养条件,首次在毕赤酵母中高效表达了TFPI1-161经纯化后最终产量高于酿酒酵母20倍以上。由于糖基化程度不同,TFPI1-161表达为TFPI1-161(24kD)和TFPI1-161(27kD)两种分子形式,其等电点分别为4、8和4.9。根据等电点差异,二可通过阴离子交换层析得到分离,其活性无显性差异。经分子筛和阴离子交换层析分离纯化后,从4L发酵培养液中可分别获得1.4g TFPI1-161(24kD)和1.8gTFPI1-161(27kD),其比活性分别达12880u/mg和12400u/mg,回收率达55%。经稀释的凝血酶原时间及发色底物法检测,重组TFPI1-161具有良好的抗凝及抑制FXa活性的作用。为获得大量TFPI1-161提供了一种廉价高效的蛋白表达纯化方式,为进一步的基础及临床前研究奠定了基础。  相似文献   
3.
4.

Background

Patients with diabetes mellitus (DM) suffer from an increased risk of cardiovascular events caused by thrombotic conditions. Adipose tissue might play a crucial role in this pathogenesis by synthesis of procoagulant mediators. This study was performed to elucidate the role of the adipocytokines leptin and resistin in the development of hypercoagulability and hypofibrinolysis under diabetic conditions.

Methods

Sixty two patients with or without DM were included in our study to measure leptin, resistin and tissue factor (TF) plasma concentrations. Moreover, flow chamber experiments were performed to assess factor Xa and plasmin activity on the surface of HUVECs. Western blot and real-time PCR were performed to determine mRNA and protein expression of main factors of the coagulation and fibrinolytic system.

Results

Patients with diabetes showed increased levels of leptin and resistin (leptin: 25.69 ± 13.9 vs. 15.98 ± 17.5 ng/mL, p < 0.05; resistin: 2.61 ± 0.6 vs. 1.19 ± 0.7 ng/mL, p < 0.05), which were positively correlated with TF. In vitro, leptin and resistin induced increased factor Xa activity (leptin: 4.29 ± 0.57-fold, p < 0.05; resistin 4.19 ± 0.7-fold, p < 0.05 vs. control) on HUVECs as also reflected by elevated TF mRNA and protein expression. Moreover, stimulatory (plasminogen activator inhibitor 1) and inhibitory (tissue plasminogen activator) mediators of the fibrinolytic cascade were induced by leptin and resistin, leading to a balanced plasmin activity regulation.

Conclusions

Leptin and resistin lead to a procoagulant state in HUVECs by inducing TF expression. This mechanism might be one explanation for the prothrombotic state observed under diabetic conditions.  相似文献   
5.
6.
Ticks are mostly obligatory blood feeding ectoparasites that have an impact on human and animal health. In addition to direct damage due to feeding, some tick species serve as the vectors for the causative agents of several diseases, such as the spirochetes of the genus Borrelia causing Lyme disease, the virus of tick-borne encephalitis, various Rickettsial pathogens or even protozoan parasites like Babesia spp. Hard ticks are unique among bloodfeeders because of their prolonged feeding period that may last up to two weeks. During such a long period of blood uptake, the host develops a wide range of mechanisms to prevent blood loss. The arthropod ectoparasite, in turn, secretes saliva in the sites of bite that assists blood feeding. Indeed, tick saliva represents a rich source of proteins with potent pharmacologic action that target different mechanisms of coagulation, platelet aggregation and vasoconstriction. Tick adaptation to their vertebrate hosts led to the inclusion of a powerful protein armamentarium in their salivary secretion that has been investigated by high-throughput methods. The resulting knowledge can be exploited for the isolation of novel antihemostatic agents. Here we review the tick salivary antihemostatics and their characterized functions at the molecular and cellular levels.  相似文献   
7.
Endothelial–mesenchymal transition (EndMT) is an important source of myofibroblasts, but also contributes to the progression of diabetic nephropathy (DN). By several differential gene expression analyses from the Gene Expression Omnibus (GEO) database, the tissue factor pathway inhibitor 2 (TFPI2) gene, known as a tumor suppressor, was shown to be dysregulated in DN; however, the potential role and regulatory mechanism of TFPI2 in DN are unclear. Here, we found abnormal upregulation of TFPI2 in the renal cortex of diabetic mice, accompanied by impaired renal function. We also injected a single dose of adeno-associated virus (AAV)2 carrying shRNA targeting TFPI2 intravenously into these mice and found that knockdown of TFPI2 improved renal function and reduced renal fibrosis and cell apoptosis in experimental DN. Furthermore, hyperglycemia-induced EndMT was inhibited in the absence of TFPI2, as evidenced by increased expression of endothelial markers (VE-cadherin and CD31) and decreased expression of mesenchymal markers (α-SMA, desmin, and FSP-1). To further explore the mechanism in vitro, human renal glomerular endothelial cells (hRGECs) were incubated in the presence of high glucose or transforming growth factor beta (TGF-β)2. TFPI2 deficiency inhibited high glucose-induced cell apoptosis and TGF-β2-induced EndMT in hRGECs, while overexpression of TFPI2 had the opposite effects. Importantly, TGF-β2 is a crucial driver of EndMT, and we found that TFPI2 promoted TGF-β2/Smad signaling activation by interferring the interaction of TGF-β pathway regulators (SMURF2 with SMAD7). Our results show that TFPI2 regulates EndMT and the TGF-β2 signaling pathway and is a potential promoter of DN pathogenesis.  相似文献   
8.
Activation of blood coagulation factor X to factor Xa (FXa) is inhibited by tissue factor pathway inhibitor (TFPI). The second Kunitz-type inhibitory domain (K2) of TFPI binds a catalytic domain of FXa, whereas the first domain (K1) does not. We analyzed computer models of complexes of FXa with K1 or K2, which were made using a crystal structure of FXa. Favorable hydrophobic interaction was observed in the complex of FXa with K2. Furthermore, we constructed a tertiary structure of FXa using CHIMERA to assess the accuracy of a homology modeling method. The isolated model structure of FXa agreed well with the crystal structure, but analyses of complexes of this structure with K1 or K2 revealed that the models of complexes could not provide clear evidence of greater binding ability to K2 because of the positional difference of a few side chains interacting with the inhibitor.  相似文献   
9.
通过对个别氨基酸突变的研究,获得了保持良好生物活性的长半衰期组织因子途径抑制因子(tissue factor pathwayinhibitor,TFPI)重组蛋白的有效途径.采用定点诱变和基因重组技术,首先在TFPI cDNA特定位点形成一个位点的沉默突变,以提高TFPI在毕赤酵母细胞内的表达量,此cDNA称为mTFPI.在此基础上,通过系列位点突变,形成3个羧基端突变体:m0TFPI、m1TFPI和m2TFPI.将上述4种TFPI cDNA与表达质粒pPic9连接,转染大肠杆菌,通过PCR和DNA测序确认重组质粒,转染酵母细胞GS115,甲醇诱导表达重组蛋白.采用层析方法纯化TFPI重组蛋白,用125I标记重组蛋白,静脉注射给药,比较四者在SD大鼠体内血浆代谢清除速度.用底物显色法测定重组蛋白抑制凝血因子Xa(Fxa)的活性,比较各株TFPI重组蛋白突变体在体内、体外对FXa的抑制作用及肝素对各株TFPI重组蛋白功能的影响.结果显示,相比野生型TFPI重组蛋(mTFPI)而言,3株羧基端突变体m0TFPI、m1TFPI、m2TFPI在SD大鼠体内血浆代谢清除时间均有不同程度延长,其生物代谢半衰期分别是mTFPI的1.5倍、1.9倍和大于2倍,与m-TFPI相比,3个rTFPI突变体在体内、体外抑制FXa的作用无明显减弱,与肝素的结合能力及协同能力也无明显减弱.结果表明,m0TFPI、m1TFPI和m2TFPI在生物半衰期得到明显延长的同时,仍保持良好的抑制Fxa的生物活性.  相似文献   
10.
Tissue factor pathway inhibitor-2 (TFPI-2) inhibits factor XIa, plasma kallikrein, and factor VIIa/tissue factor; accordingly, it has been proposed for use as an anticoagulant. Full-length TFPI-2 or its isolated first Kunitz domain (KD1) also inhibits plasmin; therefore, it has been proposed for use as an antifibrinolytic agent. However, the anticoagulant properties of TFPI-2 or KD1 would diminish its antifibrinolytic function. In this study, structure-based investigations and analysis of the serine protease profiles revealed that coagulation enzymes prefer a hydrophobic residue at the P2' position in their substrates/inhibitors, whereas plasmin prefers a positively charged arginine residue at the corresponding position in its substrates/inhibitors. Based upon this observation, we changed the P2' residue Leu-17 in KD1 to Arg (KD1-L17R) and compared its inhibitory properties with wild-type KD1 (KD1-WT). Both WT and KD1-L17R were expressed in Escherichia coli, folded, and purified to homogeneity. N-terminal sequences and mass spectra confirmed proper expression of KD1-WT and KD1-L17R. Compared with KD1-WT, the KD1-L17R did not inhibit factor XIa, plasma kallikrein, or factor VIIa/tissue factor. Furthermore, KD1-L17R inhibited plasmin with ~6-fold increased affinity and effectively prevented plasma clot fibrinolysis induced by tissue plasminogen activator. Similarly, in a mouse liver laceration bleeding model, KD1-L17R was ~8-fold more effective than KD1-WT in preventing blood loss. Importantly, in this bleeding model, KD1-L17R was equally or more effective than aprotinin or tranexamic acid, which have been used as antifibrinolytic agents to prevent blood loss during major surgery/trauma. Furthermore, as compared with aprotinin, renal toxicity was not observed with KD1-L17R.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号