首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  2018年   1篇
  2012年   1篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
Template‐based protein structure modeling is commonly used for protein structure prediction. Based on the observation that multiple template‐based methods often perform better than single template‐based methods, we further explore the use of a variable number of multiple templates for a given target in the latest variant of TASSER, TASSERVMT. We first develop an algorithm that improves the target‐template alignment for a given template. The improved alignment, called the SP3 alternative alignment, is generated by a parametric alignment method coupled with short TASSER refinement on models selected using knowledge‐based scores. The refined top model is then structurally aligned to the template to produce the SP3 alternative alignment. Templates identified using SP3 threading are combined with the SP3 alternative and HHEARCH alignments to provide target alignments to each template. These template models are then grouped into sets containing a variable number of template/alignment combinations. For each set, we run short TASSER simulations to build full‐length models. Then, the models from all sets of templates are pooled, and the top 20–50 models selected using FTCOM ranking method. These models are then subjected to a single longer TASSER refinement run for final prediction. We benchmarked our method by comparison with our previously developed approach, pro‐sp3TASSER, on a set with 874 easy and 318 hard targets. The average GDT‐TS score improvements for the first model are 3.5 and 4.3% for easy and hard targets, respectively. When tested on the 112 CASP9 targets, our method improves the average GDT‐TS scores as compared to pro‐sp3‐TASSER by 8.2 and 9.3% for the 80 easy and 32 hard targets, respectively. It also shows slightly better results than the top ranked CASP9 Zhang‐Server, QUARK and HHpredA methods. The program is available for download at http://cssb.biology.gatech.edu/ . © 2011 Wiley Periodicals, Inc.  相似文献   
2.
In a variety of threading methods, often poorly ranked (low z‐score) templates have good alignments. Here, a new method, TASSER_low‐zsc that identifies these low z‐score–ranked templates to improve protein structure prediction accuracy, is described. The approach consists of clustering of threading templates by affinity propagation on the basis of structural similarity (thread_cluster) followed by TASSER modeling, with final models selected by using a TASSER_QA variant. To establish the generality of the approach, templates provided by two threading methods, SP3 and SPARKS2, are examined. The SP3 and SPARKS2 benchmark datasets consist of 351 and 357 medium/hard proteins (those with moderate to poor quality templates and/or alignments) of length ≤250 residues, respectively. For SP3 medium and hard targets, using thread_cluster, the TM‐scores of the best template improve by ~4 and 9% over the original set (without low z‐score templates) respectively; after TASSER modeling/refinement and ranking, the best model improves by ~7 and 9% over the best model generated with the original template set. Moreover, TASSER_low‐zsc generates 22% (43%) more foldable medium (hard) targets. Similar improvements are observed with low‐ranked templates from SPARKS2. The template clustering approach could be applied to other modeling methods that utilize multiple templates to improve structure prediction. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
3.
In this work, we develop a method called fragment comparison and the template comparison (FTCOM) for assessing the global quality of protein structural models for targets of medium and hard difficulty (remote homology) produced by structure prediction approaches such as threading or ab initio structure prediction. FTCOM requires the Cα coordinates of full length models and assesses model quality based on fragment comparison and a score derived from comparison of the model to top threading templates. On a set of 361 medium/hard targets, FTCOM was applied to and assessed for its ability to improve on the results from the SP3, SPARKS, PROSPECTOR_3, and PRO‐SP3TASSER threading algorithms. The average TM‐score improves by 5–10% for the first selected model by the new method over models obtained by the original selection procedure in the respective threading methods. Moreover, the number of foldable targets (TM‐score ≥ 0.4) increases from least 7.6% for SP3 to 54% for SPARKS. Thus, FTCOM is a promising approach to template selection. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
4.
Grimm V  Zhang Y  Skolnick J 《Proteins》2006,63(3):457-465
The understanding of protein-protein interactions is a major goal in the postgenomic era. The prediction of interaction from sequence and the subsequent generation of full-length dimeric models is therefore of great interest especially because the number of structurally characterized protein-protein complexes is sparse. A quality assessment of a benchmark comprised of 170 weakly homologous dimeric target-template pairs is presented. They are predicted in a two-step method, similar to the previously described MULTIPROSPECTOR algorithm: each target sequence is assigned to a monomeric template structure by threading; then, those templates that belong to the same physically interacting dimer template are selected. Additionally we use structural alignments as the "gold standard" to assess the percentage of correctly assigned monomer and dimer templates and to evaluate the threading results with a focus on the quality of the alignments in the interfacial region. This work aims to give a quantitative picture of the quality of dimeric threading. Except for one, all monomer templates are identified correctly, but approximately 40% of the dimer templates are still problematic or incorrect. Preliminary results for three full-length dimeric models generated with the TASSER method show on average a significant improvement of the final model over the initial template.  相似文献   
5.
Zhou H  Skolnick J 《Proteins》2008,71(3):1211-1218
In this work, we develop a fully automated method for the quality assessment prediction of protein structural models generated by structure prediction approaches such as fold recognition servers, or ab initio methods. The approach is based on fragment comparisons and a consensus C(alpha) contact potential derived from the set of models to be assessed and was tested on CASP7 server models. The average Pearson linear correlation coefficient between predicted quality and model GDT-score per target is 0.83 for the 98 targets, which is better than those of other quality assessment methods that participated in CASP7. Our method also outperforms the other methods by about 3% as assessed by the total GDT-score of the selected top models.  相似文献   
6.
Lee SY  Zhang Y  Skolnick J 《Proteins》2006,63(3):451-456
The TASSER structure prediction algorithm is employed to investigate whether NMR structures can be moved closer to their corresponding X-ray counterparts by automatic refinement procedures. The benchmark protein dataset includes 61 nonhomologous proteins whose structures have been determined by both NMR and X-ray experiments. Interestingly, by starting from NMR structures, the majority (79%) of TASSER refined models show a structural shift toward their X-ray structures. On average, the TASSER refined models have a root-mean-square-deviation (RMSD) from the X-ray structure of 1.785 A (1.556 A) over the entire chain (aligned region), while the average RMSD between NMR and X-ray structures (RMSD(NMR_X-ray)) is 2.080 A (1.731 A). For all proteins having a RMSD(NMR_X-ray) >2 A, the TASSER refined structures show consistent improvement. However, for the 34 proteins with a RMSD(NMR_X-ray) <2 A, there are only 21 cases (60%) where the TASSER model is closer to the X-ray structure than NMR, which may be due to the inherent resolution of TASSER. We also compare the TASSER models with 12 NMR models in the RECOORD database that have been recalculated recently by Nederveen et al. from original NMR restraints using the newest molecular dynamics tools. In 8 of 12 cases, TASSER models show a smaller RMSD to X-ray structures; in 3 of 12 cases, where RMSD(NMR_X-ray) <1 A, RECOORD does better than TASSER. These results suggest that TASSER can be a useful tool to improve the quality of NMR structures.  相似文献   
7.
Lee SY  Skolnick J 《Proteins》2007,68(1):39-47
To improve the accuracy of TASSER models especially in the limit where threading provided template alignments are of poor quality, we have developed the TASSER(iter) algorithm which uses the templates and contact restraints from TASSER generated models for iterative structure refinement. We apply TASSER(iter) to a large benchmark set of 2,773 nonhomologous single domain proteins that are < or = 200 in length and that cover the PDB at the level of 35% pairwise sequence identity. Overall, TASSER(iter) models have a smaller global average RMSD of 5.48 A compared to 5.81 A RMSD of the original TASSER models. Classifying the targets by the level of prediction difficulty (where Easy targets have a good template with a corresponding good threading alignment, Medium targets have a good template but a poor alignment, and Hard targets have an incorrectly identified template), TASSER(iter) (TASSER) models have an average RMSD of 4.15 A (4.35 A) for the Easy set and 9.05 A (9.52 A) for the Hard set. The largest reduction of average RMSD is for the Medium set where the TASSER(iter) models have an average global RMSD of 5.67 A compared to 6.72 A of the TASSER models. Seventy percent of the Medium set TASSER(iter) models have a smaller RMSD than the TASSER models, while 63% of the Easy and 60% of the Hard TASSER models are improved by TASSER(iter). For the foldable cases, where the targets have a RMSD to the native <6.5 A, TASSER(iter) shows obvious improvement over TASSER models: For the Medium set, it improves the success rate from 57.0 to 67.2%, followed by the Hard targets where the success rate improves from 32.0 to 34.8%, with the smallest improvement in the Easy targets from 82.6 to 84.0%. These results suggest that TASSER(iter) can provide more reliable predictions for targets of Medium difficulty, a range that had resisted improvement in the quality of protein structure predictions.  相似文献   
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号