首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
  国内免费   1篇
  2022年   1篇
  2021年   3篇
  2020年   4篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2008年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
Tumour‐associated macrophages (TAMs), which possess M2‐like characters and are derived from immature monocytes in the circulatory system, represent a predominant population of inflammatory cells in solid tumours. TAM infiltration in tumour microenvironment can be used as an important prognostic marker in many cancer types and is a potential target for cancer prevention or treatment. VEGI‐251 not only is involved in the inhibition of tumour angiogenesis, but also participates in the regulation of host immunity. This work aimed to investigate the involvement of VEGI‐251 in the regulation of specific antitumour immunity. We found that recombinant human VEGI‐251(rhVEGI‐251) efficiently mediated the elimination of TAMs in tumour tissue in mice, and induced apoptosis of purified TAMs in vitro. During this process, caspase‐8 and caspase‐3 were activated, leading to PARP cleavage and apoptosis. Most importantly, we further elucidated the mechanism underlying VEGI‐251‐triggered TAM apoptosis, which suggests that ASK1, an intermediate component of the VEGI‐251, activates the JNK pathway via TRAF2 in a potentially DR3‐dependent manner in the process of TAM apoptosis. Collectively, our findings provide new insights into the basic mechanisms underlying the actions of VEGI‐251 that might lead to future development of antitumour therapeutic strategies using VEGI‐251 to target TAMs.  相似文献   
2.
Glioma is one of the most lethal tumours and common malignant in the central nervous system (CNS), which exhibits diffuse invasion and aggressive growth. Several studies have reported the association of FDPS to tumour development and progression. However, the role of FDPS in progression of glioma and macrophage recruitment is not well‐elucidated. In the current study, a remarkable enhancement in FDPS level was observed in glioma tissues and associated with poor prognosis, contributed to tumour growth. FDPS was correlated with macrophage infiltration in glioma and pharmacological deletion of macrophages largely abrogated the oncogenic functions of FDPS in glioma. Mechanistically, FDPS activated Wnt/β‐catenin signalling pathway and ultimately facilitates macrophage infiltration by inducing CCL20 expression. In conclusion, overexpressed FDPS exhibits an immunomodulatory role in glioma. Therefore, targeting FDPS may be an effective therapeutic strategy for glioma.  相似文献   
3.
As a major class of pattern-recognition receptors, Toll-like receptors (TLRs) play a critical role in defense against invading pathogens. Increasing evidence demonstrates that, in addition to infection, TLRs are involved in other important pathological processes, such as tumorigenesis. Activation of TLRs results in opposing outcomes, pro-tumorigenic effects and anti-tumor functions. TLR signaling can inhibit apoptosis and promote chronic inflammation-induced tumorigenesis. TLR activation in tumor cells and immune cells can induce production of cytokines, increase tumor cell proliferation and apoptosis resistance, promote invasion and metastasis, and inhibit immune cell activity resulting in tumor immune escape. In contrast, the engagement of other TLRs directly induces growth inhibition and apoptosis of tumor cells and triggers activation of immune cells enhancing anti-tumor immune responses. Thus, the interpretation of the precise function of each TLR in tumors is very important for targeting TLRs and using TLR agonists in tumor therapy. We review the role of TLR signaling in tumors and discuss the factors that affect outcomes of TLR activation.  相似文献   
4.
5.
History of cancer immunotherapy lasts for more than 120 years. In 1891 William B. Coley injected bacteria into inoperable cancer (bone sarcoma) and observed tumor shrinkage. He is recognized as the "'"Father of Immunotherapy"'". Cancer immunotherapy is based on the ability of the immune system to recognize cancer cells and to affect their growth and expansion. Beside the fact that, tumor cells are genetically distinct from their normal counterparts, and should be recognized and eliminated by immune system, the tumor associated antigens (TAAs) are often poorly immunogenic due to immunoediting. This process allows tumor to evolve during continuous interactions with the host immune system, and eventually escape from immune surveillance. Furthermore, tumor microenvironment consists of immunosuppressive cells that release immunosuppressive factors including IL-6, IL-10, IDO, TGFβ or VEGF. Interactions between cancer and stroma cells create network of immunosuppressive pathways, while activation of immune defense is inhibited. A key to successful immunotherapy is to overcome the local immunosuppression within tumor microenvironment and activate mechanisms that lead to tumor eradication. There are two clinical approaches of immunotherapy: active and passive. Active immunotherapy involves stimulation of immune response to tumor associated antigens (TAAs), either non-specifically via immunomodulating agents or specifically employing cancer vaccines. This review presents the progress and breakthroughs in design, development and clinical application of selected cell-based tumor vaccines achieved due to the generation and development of gene transfer technologies.  相似文献   
6.
Hepatocarcinoma cancer (HCC), one of the most malignant cancers, occurs significantly more often in men than in women; however, little is known about its underlying molecular mechanisms. Here we identified that 17β-estradiol (E2) could suppress tumor growth via regulating the polarization of macrophages. We showed that E2 re-administration reduced tumor growth in orthotopic and ectopic mice HCC models. E2 functioned as a suppressor for macrophage alternative activation and tumor progression by keeping estrogen receptor β (ERβ) away from interacting with ATP5J (also known as ATPase-coupling factor 6), a part of ATPase, thus inhibiting the JAK1-STAT6 signaling pathway. These studies introduce a novel mechanism for suppressing male-predominant HCC.  相似文献   
7.
Cancer complexity constantly challenges the way that clinicians manage breast cancer therapy. Tumor heterogeneity and intratumoral stroma characteristics allow cells with different phenotypes and deregulated apoptotic, proliferative and migration abilities to co-exist contributing to a disappointing therapeutic response. While new approaches are being associated with conventional chemotherapy, such as hormonal therapy or target monoclonal antibodies, recurrence and metastasization are still observed. Membrane transporters are the cell's first line of contact with anticancer drugs having a major role in multidrug resistance events. This structural-based activity enables the cell to be drug-resistant by decreasing drug intracellular concentration through an efflux-transport mechanism, mainly associated with overexpression of ATP-binding cassette (ABC) proteins. This review focuses on some of the important structural and biological properties of the malignant cell and tumor microenvironment, addressing the role of the membrane ABC transporters in therapeutic outcomes, and highlighting related molecular pathways that may represent meaningful target therapies.  相似文献   
8.
Overexpression of P2X7R has been observed in several tumours and is related to cancer advancement and metastasis. However, the role of P2X7R in colorectal cancer (CRC) patients is not well understood. In the current study, overexpression of P2X7R and the effects at the molecular and functional levels in CRC were assessed in a mouse orthotopic model. Functional assays, such as the CCK‐8 assay, wound healing and transwell assay, were used to determine the biological role of P2X7R in CRC cells. CSC‐related genes and properties were detected via sphere formation and real‐time PCR assays. The underlying mechanisms were explored by Western blotting, real‐time PCR and Flow cytometry. In this study, we found that overexpression of P2X7R increases in the in vivo growth of tumours. P2X7R overexpression also increased CD31, VEGF and concurrent angiogenesis. P2X7R up‐regulates aldehyde dehydrogenase‐1 (ALDH1) and CSC characteristics. Transplanted tumour cells with P2X7R overexpression stimulated cytokines to recruit tumour‐associated macrophage (TAMs) to increase the growth of tumours. We also found that the NF‐κB signalling pathway is involved in P2X7R‐induced cytokine up‐regulation. P2X7R promotes NF‐κB–dependent cytokine induction, which leads to TAM recruitment to control tumour growth and advancement and remodelling of the stroma. Our findings demonstrate that P2X7R plays a key role in TAM recruitment, which may be a therapeutic target for CRC patients.  相似文献   
9.
Absent in melanoma 2 (AIM2) as an immune regulator for the regulation of tumor-associated macrophages (TAMs) function is unclear in tumor development. Here, the AIM2 function was investigated in TAMs-mediated malignant behaviors of renal carcinoma. The correlation analysis result showed that the AIM2 expression in TAMs was negatively correlated with the percentages of M2-like polarization phenotype in human or murine renal cancer specimens. By the cocultured assay with bone marrow-derived macrophages (BMDMs) and Renca cells, overexpression of AIM2 in macrophages enhanced the inflammasome activation and reversed the phenotype from M2 to M1. Compared with BMDMs-Ctrl cocultured group, BMDMs-AIM2 cocultured group showed reduced tumor cell proliferation and migration. The blockade of inflammasome activation by the inhibitor Ac-YVAD-CMK abrogated AIM2-mediated M1 polarization and the inhibition of tumor cell growth. To evaluate the therapeutic efficacy of AIM2-mediated M1 macrophages in vivo, BMDMs-AIM2 were intravenously injected into subcutaneous Renca-tumor mice. The results showed that the infiltration of M1 TAMs was increased and tumor growth was suppressed in BMDMs-AIM2-treated mice when compared with BMDMs-Ctrl-treat mice. Accordingly, the blockade of inflammasome activation reduced the anti-tumor activities of BMDMs-AIM2. Moreover, the lung metastases of renal carcinoma were suppressed by the administration of BMDMs-AIM2 accompanied with the reduced tumor foci. These results demonstrated that AIM2 enhanced TAMs polarization switch from anti-inflammatory M2 phenotypy to pro-inflammatory M1 through inflammasome signaling activation, thus exerting therapeutic intervention in renal carcinoma models. Our results provide a possible molecular mechanism for the modulation of TAMs polarization in tumor microenvironment and open a new potential therapeutic approach for renal cancer.  相似文献   
10.
血小板反应蛋白4 (thrombospondin 4, THBS4)属于THBS家族成员,是细胞外基质分泌的蛋白质,参与调控细胞增殖、黏附及血管生成等多种生理过程。近来研究表明,机体在炎症刺激下加速产生THBS4并诱导巨噬细胞粘附与积累。我们的前期研究证实,THBS4在肝癌(hepatocellular carcinoma, HCC)中发挥促癌作用,但THBS4对肝癌免疫微环境的影响尚不明确。本文旨在分析THBS4通过诱导肿瘤相关巨噬细胞M2型极化,促进肝癌细胞转移的作用。通过肝癌条件培养基(HCC conditioned medium, HCM)模拟肿瘤微环境,发现在HCM作用下巨噬细胞中THBS4表达呈时间依赖性升高(P<0.05);下调THBS4促使M1型巨噬细胞标志物IL-1β、CD86的表达升高(P<0.01),而M2型标志物IL-10和CD206表达降低(P<0.01)。进一步通过Transwell共培养实验检测THBS4诱导的M2型巨噬细胞对肝癌转移的影响。将下调THBS4的M2型巨噬细胞(M2-TAMs)与HepG2肝癌细胞进行共培养。结果显示,下调T...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号