首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2010年   2篇
  2009年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2001年   1篇
  1999年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
The V2 vasopressin receptor is a G-protein-coupled receptor that regulates the renal antidiuretic response. Its third intracellular loop is involved in the coupling not only with the GαS protein but also with gC1qR, a potential chaperone of G-protein-coupled receptors. In this report, we describe the NMR solution structure of the V2 i3 loop under a cyclized form (i3_cyc) and characterize its interaction with gC1qR. i3_cyc formed a left-twisted α-helical hairpin structure. The building of a model of the entire V2 receptor including the i3_cyc NMR structure clarified the side-chain orientation of charged residues, in agreement with literature mutagenesis reports. In the model, the i3 loop formed a rigid helical column, protruding deep inside the cytoplasm, as does the i3 loop in the recently elucidated structure of squid rhodopsin. However, its higher packing angle resulted in a different structural motif at the intracellular interface, which may be important for the specific recognition of GαS. Moreover, we could estimate the apparent Kd of the i3_cyc/gC1qR complex by anisotropy fluorescence. Using a shorter and more soluble version of i3_cyc, which encompassed the putative site of gC1qR binding, we showed by NMR saturation transfer difference spectroscopy that the binding surface corresponded to the central arginine cluster. Binding to gC1qR induced the folding of the otherwise disordered short peptide into a spiral-like path formed by a succession of I and IV turns. Our simulations suggested that this folding would rigidify the arginine cluster in the entire i3 loop and would alter the conformation of the cytosolic extensions of TM V and TM VI helices. In agreement with this conformational rearrangement, we observed that binding of gC1qR to the full-length receptor modifies the intrinsic tryptophan fluorescence binding curves of V2 to an antagonist.  相似文献   
2.
The lipid modified human N-Ras protein, implicated in human cancer development, is of particular interest due to its membrane anchor that determines the activity and subcellular location of the protein. Previous solid-state NMR investigations indicated that this membrane anchor is highly dynamic, which may be indicative of backbone conformational flexibility. This article aims to address if a dynamic exchange between three structural models exist that had been determined previously. We applied a combination of solid-state nuclear magnetic resonance (NMR) methods and replica exchange molecular dynamics (MD) simulations using a Ras peptide that represents the terminal seven amino acids of the human N-Ras protein. Analysis of correlations between the conformations of individual amino acids revealed that Cys 181 and Met 182 undergo collective conformational exchange. Two major structures constituting about 60% of all conformations could be identified. The two conformations found in the simulation are in rapid exchange, which gives rise to low backbone order parameters and nuclear spin relaxation as measured by experimental NMR methods. These parameters were also determined from two 300 ns conventional MD simulations, providing very good agreement with the experimental data.  相似文献   
3.
We propose a strategy based on the combination of experimental NH(N)/C(alpha)H(alpha) dipole/dipole cross-correlated relaxation rates and chemical shift analysis for the determination of Psi torsion angles in proteins. The method allows the determination of a dihedral angle that is not easily accessible by nuclear magnetic resonance (NMR). The measurement of dihedral angle restraints can be used for structure calculation, which is known to improve the quality of NMR structures. The method is of particular interest in the case of large proteins, for which spectral assignment of the nuclear Overhauser effect spectra, and therefore straightforward structural determination, is out of reach. One advantage of the method is that it is reasonably simple to implement, and could be used in association with other methods aiming at obtaining structural information on complex systems, such as residual dipolar coupling measurements. An illustrative example is analyzed in the case of the 30-kDa protein 6-phosphogluconolactonase.  相似文献   
4.
Statistical analysis reveals that the set of differences between the secondary shifts of the α- and β-carbons for residues i of a protein (Δδ13Cαi- Δδ13Cβi) provides the means to detect and correct referencing errors for 1H and 13C nuclei within a given dataset. In a correctly referenced protein dataset, linear regression plots of Δδ13Cαi,Δδ13Cβi, or Δδ1Hαi vs. (Δδ13Cαi- Δδ13Cβi) pass through the origin from two directions, the helix-to-coil and strand-to-coil directions. Thus, linear analysis of chemical shifts (LACS) can be used to detect referencing errors and to recalibrate the 1H and 13C chemical shift scales if needed. The analysis requires only that the signals be identified with distinct residue types (intra-residue spin systems). LACS allows errors in calibration to be detected and corrected in advance of sequence-specific assignments and secondary structure determinations. Signals that do not fit the linear model (outliers) deserve scrutiny since they could represent errors in identifying signals with a particular residue, or interesting features such as a cis-peptide bond. LACS provides the basis for the automated detection of such features and for testing reassignment hypotheses. Early detection and correction of errors in referencing and spin system identifications can improve the speed and accuracy of chemical shift assignments and secondary structure determinations. We have used LACS to create a database of offset-corrected chemical shifts corresponding to nearly 1800 BMRB entries: 300 with and 1500 without corresponding three-dimensional (3D) structures. This database can serve as a resource for future analysis of the effects of amino acid sequence and protein secondary and tertiary structure on NMR chemical shifts.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s10858-005-1717-0  相似文献   
5.
New relationships found in the process of updating the structural classification of proteins (SCOP) database resulted in the revision of the structure of the N-terminal, DNA-binding domain of the transition state regulator AbrB. The dimeric AbrB domain shares a common fold with the addiction antidote MazE and the subunit of uncharacterized protein MraZ implicated in cell division and cell envelope formation. It has a detectable sequence similarity to both MazE and MraZ thus providing an evolutionary link between the two proteins. The putative DNA-binding site of AbrB is found on the same face as the DNA-binding site of MazE and appears similar, both in structure and sequence, to the exposed conserved region of MraZ. This strongly suggests that MraZ also binds DNA and allows for a consensus model of DNA recognition by the members of this novel protein superfamily.  相似文献   
6.
The possibility of generating protein folds at the stage of backbone assignment using structural restraints derived from experimentally measured cross-hydrogen bond scalar couplings and secondary chemical shift information is investigated using as a test case the small / protein chymotrypsin inhibitor 2. Dihedral angle restraints for the and angles of 32 out of 64 residues could be obtained from secondary chemical shift analysis with the TALOS program (Corneliscu et al., 1999a). This information was supplemented by 18 hydrogen-bond restraints derived from experimentally measured cross-hydrogen bond 3hbJNC coupling constants. These experimental data were sufficient to generate structures that are as close as 1.0 Å backbone rmsd from the crystal structure. The fold is, however, not uniquely defined and several solutions are generated that cannot be distinguished on the basis of violations or energetic considerations. Correct folds could be identified by combining clustering methods with knowledge-based potentials derived from structural databases.  相似文献   
7.
Chemical shifts of nuclei in or attached to a protein backbone are exquisitely sensitive to their local environment. A computer program, SPARTA, is described that uses this correlation with local structure to predict protein backbone chemical shifts, given an input three-dimensional structure, by searching a newly generated database for triplets of adjacent residues that provide the best match in phi/psi/chi(1 )torsion angles and sequence similarity to the query triplet of interest. The database contains (15)N, (1)H(N), (1)H(alpha), (13)C(alpha), (13)C(beta) and (13)C' chemical shifts for 200 proteins for which a high resolution X-ray (< or =2.4 A) structure is available. The relative importance of the weighting factors for the phi/psi/chi(1) angles and sequence similarity was optimized empirically. The weighted, average secondary shifts of the central residues in the 20 best-matching triplets, after inclusion of nearest neighbor, ring current, and hydrogen bonding effects, are used to predict chemical shifts for the protein of known structure. Validation shows good agreement between the SPARTA-predicted and experimental shifts, with standard deviations of 2.52, 0.51, 0.27, 0.98, 1.07 and 1.08 ppm for (15)N, (1)H(N), (1)H(alpha), (13)C(alpha), (13)C(beta) and (13)C', respectively, including outliers.  相似文献   
8.
Local structural and dynamic modulations due to small environmental perturbations reflect the adaptability of the protein to different interactors. We have investigated here the preferential local perturbations in Dynein light chain protein (DLC8), a cargo adapter, by sub-denaturing urea concentrations. Equilibrium unfolding experiments by optical spectroscopic methods indicated a two state like unfolding of DLC8 dimer, with the transition mid-point occurring around 8.6 M urea. NMR studies identified the β3 and β4 strands, N-, C- terminal regions, loops connecting β1 to α1, α1 to α2 and β3 to β4 as the soft targets of urea perturbation and thus indicated potential unfolding initiation sites. Native-state hydrogen exchange studies suggested the unfolding to traverse from the edges towards the centre of the secondary structural elements. At 6 M urea the whole protein chain acts like a cooperative unit. These observations are expected to have important implications for the protein's multiple functions.  相似文献   
9.
Chemical shifts of backbone atoms in proteins are exquisitely sensitive to local conformation, and homologous proteins show quite similar patterns of secondary chemical shifts. The inverse of this relation is used to search a database for triplets of adjacent residues with secondary chemical shifts and sequence similarity which provide the best match to the query triplet of interest. The database contains 13C, 13C, 13C, 1H and 15N chemical shifts for 20 proteins for which a high resolution X-ray structure is available. The computer program TALOS was developed to search this database for strings of residues with chemical shift and residue type homology. The relative importance of the weighting factors attached to the secondary chemical shifts of the five types of resonances relative to that of sequence similarity was optimized empirically. TALOS yields the 10 triplets which have the closest similarity in secondary chemical shift and amino acid sequence to those of the query sequence. If the central residues in these 10 triplets exhibit similar and backbone angles, their averages can reliably be used as angular restraints for the protein whose structure is being studied. Tests carried out for proteins of known structure indicate that the root-mean-square difference (rmsd) between the output of TALOS and the X-ray derived backbone angles is about 15°. Approximately 3% of the predictions made by TALOS are found to be in error.  相似文献   
10.
NMR chemical shifts in proteins depend strongly on local structure. The program TALOS establishes an empirical relation between 13C, 15N and 1H chemical shifts and backbone torsion angles ϕ and ψ (Cornilescu et al. J Biomol NMR 13 289–302, 1999). Extension of the original 20-protein database to 200 proteins increased the fraction of residues for which backbone angles could be predicted from 65 to 74%, while reducing the error rate from 3 to 2.5%. Addition of a two-layer neural network filter to the database fragment selection process forms the basis for a new program, TALOS+, which further enhances the prediction rate to 88.5%, without increasing the error rate. Excluding the 2.5% of residues for which TALOS+ makes predictions that strongly differ from those observed in the crystalline state, the accuracy of predicted ϕ and ψ angles, equals ±13°. Large discrepancies between predictions and crystal structures are primarily limited to loop regions, and for the few cases where multiple X-ray structures are available such residues are often found in different states in the different structures. The TALOS+ output includes predictions for individual residues with missing chemical shifts, and the neural network component of the program also predicts secondary structure with good accuracy. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号