首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2010年   1篇
  2009年   4篇
  2007年   2篇
  2006年   2篇
  1985年   1篇
排序方式: 共有10条查询结果,搜索用时 46 毫秒
1
1.
We survey the two-state to downhill folding transition by examining 20 λ6-85? mutants that cover a wide range of stabilities and folding rates. We investigated four new λ6-85? mutants designed to fold especially rapidly. Two were engineered using the core remodeling of Lim and Sauer, and two were engineered using Ferreiro et al.'s frustratometer. These proteins have probe-dependent melting temperatures as high as 80 °C and exhibit a fast molecular phase with the characteristic temperature dependence of the amplitude expected for downhill folding. The survey reveals a correlation between melting temperature and downhill folding previously observed for the β-sheet protein WW domain. A simple model explains this correlation and predicts the melting temperature at which downhill folding becomes possible. An X-ray crystal structure with a 1.64-Å resolution of a fast-folding mutant fragment shows regions of enhanced rigidity compared to the full wild-type protein.  相似文献   
2.
The formation of hairpin structures in the homologous, (partly) self-complementary DNA fragments d(ATCCTATnTAGGAT), n = 0–7, was studied by means of nuclear magnetic resonance, T-jump and ultra-violet techniques. It is shown that all compounds in the series may adopt hairpin-like conformations, albeit for n < 3 this only occurs to a significant amount at relatively low concentrations (∼ 10μM). For the present series of oligonucleotides, hairpin formation is accompanied by an apparent loop enthalpy significantly different from zero. The stability of the DNA hairpins turns out to be at its maximum for loop lengths of four or five residues, whereas earlier experiments (Tinocoet al., 1973) indicated that loop lengths of six to seven residues are most favourable for RNA hairpins. This is explained by considering the difference in geometry of A-RNA and B-DNA helices.  相似文献   
3.
The binding of proflavine (D) to single stranded poly(A) (P) was investigated at pH 7.0 and 25 degrees C using T-jump, stopped-flow and spectrophotometric methods. Equilibrium measurements show that an external complex PD(I) and an internal complex PD(II) form upon reaction between P and D and that their concentrations depend on the polymer/dye concentration ratio (C(P)/C(D)). For C(P)/C(D)<2.5, cooperative formation of stacks external to polymer strands prevails (PD(I)). Equilibria and T-jump experiments, performed at I=0.1M and analyzed according to the Schwarz theory for cooperative binding, provide the values of site size (g=1), equilibrium constant for the nucleation step (K( *)=(1.4+/-0.6)x10(3)M(-1)), equilibrium constant for the growth step (K=(1.2+/-0.6)x10(5)M(-1)), cooperativity parameter (q=85) and rate constants for the growth step (k(r)=1.2x10(7)M(-1)s(-1), k(d)=1.1 x 10(2)s(-1)). Stopped-flow experiments, performed at low ionic strength (I=0.01 M), indicate that aggregation of stacked poly(A) strands do occur provided that C(P)/C(D)<2.5.  相似文献   
4.
Barrier-free downhill folding has been proposed for the peripheral subunit-binding domain BBL. To date, ultrafast kinetic experiments on BBL, which are crucial for a mechanistic understanding of folding, have been hampered by the lack of good intrinsic spectroscopic probes. Here, we present a detailed kinetic characterization of three single-point tryptophan mutants of BBL that have suitable fluorescence properties for following microsecond and nanosecond folding kinetics using temperature jump fluorescence spectroscopy. Experiments were performed at pH 7, which is optimal for stability and minimizes complications that arise from the presence of an alternative native-state conformation of BBL at lower pH. We examined the dependence of rate and equilibrium constants on concentration of denaturant and found that they follow well-established laws allowing kinetic transients to be related to events in folding and compared with equilibrium data. Logarithms of rate constants versus denaturant concentration yielded plots (chevrons) that are characteristic of barrier-limited folding for all mutants investigated, including a truncated sequence that was previously used in the proposal of downhill folding. The thermodynamic quantities calculated from the rate constants were in excellent agreement with those directly determined from equilibrium denaturation based on empirical two-state equations. We found that sequence truncation of BBL as used in studies proposing downhill folding leads to a large loss in helical content and protein stability, which were exacerbated at the low pH used in those studies. The kinetics and equilibria of folding of BBL fit to conventional barrier-limited kinetics.  相似文献   
5.
Kinetics and equilibria of cyanine dyes thiazole orange (TO) and benzothiazole orange (BO) self-aggregation and binding to CT-DNA are investigated in aqueous solution at 25 degrees C and pH 7. Absorbance spectra and T-jump experiments reveal that BO forms J-aggregates while TO forms more stable H-aggregates. Fluorescence and absorbance titrations show that TO binds to DNA more tightly than BO. TO stacks externally to DNA for low polymer-to-dye concentration ratios (C(P)/C(D)) while dye intercalation occurs for high values of C(P)/C(D). T-jump and stopped-flow experiments performed at high C(P)/C(D) agree with reaction scheme D+S <=> D,S <=> DS(I) <=> DS(II) where the precursor complex D,S evolves to a partially intercalated complex DS(I) which converts to the more stable intercalate DS(II). Non-electrostatic forces play a major role in D,S stabilization. Last step is similar for both dyes suggesting accommodation of the common benzothiazole residue between base pairs. Experiments using poly(dA-dT).poly(dA-dT) and poly(dG-dC).poly(dG-dC) confirm base pair preference for TO.  相似文献   
6.
7.
High-density lipoproteins (HDLs) are complexes of proteins (mainly apoA-I and apoA-II) and lipids that remove cholesterol and prevent atherosclerosis. Understanding the distinct properties of the heterogeneous HDL population may aid the development of new diagnostic tools and therapies for atherosclerosis. Mature human HDLs form two major subclasses differing in particle diameter and metabolic properties, HDL2 (large) and HDL3 (small). These subclasses are comprised of HDL(A-I) containing only apoA-I, and HDL(A-I/A-II) containing apoA-I and apoA-II. ApoA-I is strongly cardioprotective, but the function of the smaller, more hydrophobic apoA-II is unclear. ApoA-II is thought to counteract the cardioprotective action of apoA-I by stabilizing HDL particles and inhibiting their remodeling. To test this notion, we performed the first kinetic stability study of human HDL subclasses. The results revealed that the stability of plasma spherical HDL decreases with increasing particle diameter; which may facilitate preferential cholesterol ester uptake from large lipid-loaded HDL2. Surprisingly, size-matched plasma HDL(A-I/A-II) showed comparable or slightly lower stability than HDL(A-I); this is consistent with the destabilization of model discoidal HDL observed upon increasing the A-II to A-I ratio. These results clarify the roles of the particle size and protein composition in HDL remodeling, and help reconcile conflicting reports regarding the role of apoA-II in this remodeling.  相似文献   
8.
We examined the co-operativity of ultra-fast folding of a protein and whether the Phi-value analysis of its transition state depended on the location of the optical probe. We incorporated in turn a tryptophan residue into each of the three helices of the B domain of Protein A. Each Trp mutant of the three-helix bundle protein was used as a pseudo-wild-type parent for Phi-analysis in which the intrinsic Trp fluorescence probed the formation of each helix during the transition state. Apart from local effects in the immediate vicinity of the probe, the three separate sets of Phi-values were in excellent agreement, demonstrating the overall co-operativity of folding and the robustness of the Phi-analysis. The transition state of folding of Protein A contains the second helix being well formed with many stabilizing tertiary hydrophobic interactions. In contrast, the first and the third helices are more poorly structured in the transition state. The mechanism of folding thus involves the concurrent formation of secondary and tertiary interactions, and is towards the nucleation-condensation extreme in the nucleation-condensation-framework continuum of mechanism, with helix 2 being the nucleus. We provide an error analysis of Phi-values derived purely from the kinetics of two-state chevron plots.  相似文献   
9.
The B domain of protein A (BdpA) is a popular paradigm for simulating protein folding pathways. The discrepancies between so many simulations and subsequent experimental testing may be attributable to the protein being highly symmetrical: changing experimental conditions could perturb the subtle interplay between the effects of symmetry in the native structure and the effects of asymmetry from specific interactions in a given sequence. If the protein folds via multiple pathways, perturbations, such as temperature, denaturant concentration, and mutation, should change the flux of micro pathways, leading to changes in the bulk properties of the transition state. We tested this hypothesis by conducting a Phi-analysis of BdpA as a function of temperature from 25.0 degrees C to 60.0 degrees C. The Phi-values had no significant dependence on temperature and the values at 55.0 degrees C (denaturing conditions) are very similar to those at 25.0 degrees C (folding conditions), indicating the structure of the transition state does not significantly change although the experimental conditions are considerably altered. The results suggest that BdpA folds via a single dominant folding pathway.  相似文献   
10.
Studies on members of protein families with similar structures but divergent sequences provide insights into the effects of sequence composition on the mechanism of folding. Members of the peripheral subunit-binding domain (PSBD) family fold ultrafast and approach the smallest size for cooperatively folding proteins. Φ-Value analysis of the PSBDs E3BD and POB reveals folding via nucleation-condensation through structurally very similar, polarized transition states. Here, we present a Φ-value analysis of the family member BBL and found that it also folds by a nucleation-condensation mechanism. The mean Φ values of BBL, E3BD, and POB were near identical, indicating similar fractions of non-covalent interactions being formed in the transition state. Despite the overall conservation of folding mechanism in this protein family, however, the pattern of Φ values determined for BBL revealed a larger dispersion of the folding nucleus across the entire structure, and the transition state was less polarized. The observed plasticity of transition-state structure can be rationalized by the different helix-forming propensities of PSBD sequences. The very strong helix propensity in the first helix of BBL, relative to E3BD and POB, appears to recruit more structure formation in that helix in the transition state at the expense of weaker interactions in the second helix. Differences in sequence composition can modulate transition-state structure of even the smallest natural protein domains.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号