首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   0篇
  国内免费   2篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2001年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
1.
Methanogenesis by a Syntrophomonas wolfei/ Methanospirillum hungatei coculture was inhibited in presence of ethylene and the hydrogenation catalyst Pd-BaSO4. However, butyrate oxidation by S. wolfei continued and ethylene was reduced to ethane. Per mol of butyrate oxidized, 2.4 mol acetate was produced and 0.8 mol ethylene was reduced. Acetylene, propylene and butene were less effective as H2 acceptors than ethylene, and addition of bromoethanesulfonic acid was necessary to inhibit methanogenesis in the presence of the two longer-chain olefins. Other hydrogenation catalysts were less effective in the order Pd-charcoal < PE-asbestos < Pd-PEI beads < Pt-Al2O3, Pd-CaCO3. Optimal ethylene hydrogenation was achieved with still incubation in presence of 7.2 mg Pd-BaSO4 and 0.7 g sand per ml medium. The higher catabolic rate of S. wolfei in presence of the methanogen indicated that the biological H2 removal mechanism was more efficient than the catalytic olefin reduction.Abbreviations BES bromoethane sulfonic acid - VFA volatile fatty acid  相似文献   
2.
Enzyme measurements were carried out with crude cell-free extracts of the propionate oxidizing coculture of Syntrophobacter wolinii and Desulfovibrio G11. Using cell-free extracts of a pure culture of Desulfovibrio G11 as a blank, most of the enzymes involved in the methylmalonyl-CoA pathway for propionate oxidation, including a propionyl-CoA: oxaloacetate transcarboxylase, were demonstrated in S. wolinii.  相似文献   
3.
The ability of Desulfovibrio vulgaris strain Marburg (DSM 2119) to oxidize alcohols was surveyed in the presence and absence of hydrogen-scavenging anaerobes, Acetobacterium woodii and Methanospirillum hungatei. In the presence of sulfate, D. vulgaris grew not only on ethanol, 1-propanol, and 1-butanol, but also on isobutanol, 1-pentanol, ethyleneglycol, and 1,3-propanediol. Metabolism of these alcohols was simple oxidation to the corresponding acids, except with the last two substrates: ethyleneglycol was oxidized to glycolate plus acetate, 1,3-propanediol to 3-hydroxypropionate plus acetate. Experimental evidence was obtained, suggesting that 2-methoxyethanol was not utilized by all the cells of strain marburg, but by a spontaneous mutant. 2-Methoxyethanol was oxidized to methoxyacetate by the mutant. Co-culture of strain Marburg plus A. woodii grew on ethanol, 1-propanol, 1-butanol, and 1,3-propanediol in the absence of sulfate. Co-culture of strain Marburg plus M. hungatei grew on ethanol, 1-propanol, and 1-butanol, but not on ethyleneglycol and 1,3-propanediol, Co-culture of the mutant plus A. woodii or M. hungatei did not grow on 2-methoxyethanol.  相似文献   
4.
Methanogenesis from acetate by a rod-shaped enrichment culture grown at 60° C was found to require the presence of two organisms rather than a single aceticlastic methanogen. A thermophilic Methanobacterium which grew on H2/CO2 or formate was isolated from the enrichment. Lawns of this methanogen were used to co-isolate an acetate oxidizer in roll tubes containing acetate agar. The rod-shaped acetate oxidizer was morphologically distinct from the methanogen and did not show F420 autofluorescence. The coculture completely degraded 40 mol/ml acetate, and produced nearly equal quantities of methane, and methanogenesis was coupled with growth. The doubling time for the coculture at 60°C was 30–40 h and the yield was 2.7±0.3 g dry wt/mol CH4. Studies with 14C-labelled substrates showed that the methyl group and the carboxyl group of acetate were both converted primarily to CO2 by the coculture and that CO2 was concurrently reduced to CH4. During growth, there was significant isotopic exchange between CO2 and acetate, especially with thecarboxyl position of acetate. These results support a mechanism for methanogenesis from acetate by the coculture in which acetate was oxidized to CO2 and H2 by one organism, while H2 was subsequently used by a second organism to reduce CO2 to CH4. Since the H2 partial pressure must be maintained below 10-4 atm by the methanogen for acetate oxidation to be thermodynamically feasible, this is an example of obligate interspecies hydrogen transfer. This mechanism was originally proposed for a single organism by Barker in 1936.  相似文献   
5.
A new species of anaerobic bacterium that degrades the even-numbered carbon fatty acids, butyrate, caproate and caprylate, to acetate and H2 and the odd-numbered carbon fatty acids, valerate and heptanoate, to acetate, propionate and H2 was obtained in coculture with either an H2-utilizing methanogen or H2-utilizing desulfovibrio. The organism could be grown only in syntrophic association with the H2-utilizer and no other energy sources or combination of electron donor and acceptors were utilized. It was a Gram-negative helical rod with 2 to 8 flagella, about 20 nm in diameter, inserted in a linear fashion about 130 nm or more apart along the concave side of the cell. It grew with a generation time of 84 h in co-culture with Methanospirillum hungatii and was present in numbers of at least 4.5×10-6 per g of anaerobic digestor sludge.  相似文献   
6.
Cold seep environments such as sediments above outcropping hydrate at Hydrate Ridge (Cascadia margin off Oregon) are characterized by methane venting, high sulfide fluxes caused by the anaerobic oxidation of methane, and the presence of chemosynthetic communities. Recent investigations showed that another characteristic feature of cold seeps is the occurrence of methanotrophic archaea, which can be identified by specific biomarker lipids and 16S rDNA analysis. This investigation deals with the diversity and distribution of sulfate-reducing bacteria, some of which are directly involved in the anaerobic oxidation of methane as syntrophic partners of the methanotrophic archaea. The composition and activity of the microbial communities at methane vented and nonvented sediments are compared by quantitative methods including total cell counts, fluorescence in situ hybridization (FISH), bacterial production, enzyme activity, and sulfate reduction rates. Bacteria involved in the degradation of particulate organic carbon (POC) are as active and diverse as at other productive margin sites of similar water depths. The availability of methane supports a two orders of magnitude higher microbial biomass (up to 9.6 2 10 10 cells cm m 3 ) and sulfate reduction rates (up to 8 w mol cm m 3 d m 1 ) in hydrate-bearing sediments, as well as a high bacterial diversity, especially in the group of i -proteobacteria including members of the branches Desulfosarcina/Desulfococcus , Desulforhopalus , Desulfobulbus , and Desulfocapsa . Most of the diversity of sulfate-reducing bacteria in hydrate-bearing sediments comprises seep-endemic clades, which share only low similarities with previously cultured bacteria.  相似文献   
7.
Anaerobic digestion is a promising method for energy recovery through conversion of organic waste to biogas and other industrial valuables. However, to tap the full potential of anaerobic digestion, deciphering the microbial metabolic pathway activities and their underlying bioenergetics is required. In addition, the behavior of organisms in consortia along with the analytical abilities to kinetically measure their metabolic interactions will allow rational optimization of the process. This review aims to explore the metabolic bottlenecks of the microbial communities adopting latest advances of profiling and 13C tracer-based analysis using state of the art analytical platforms (GC, GC-MS, LC-MS, NMR). The review summarizes the phases of anaerobic digestion, the role of microbial communities, key process parameters of significance, syntrophic microbial interactions and the bottlenecks that are critical for optimal bioenergetics and enhanced production of valuables. Considerations into the designing of efficient synthetic microbial communities as well as the latest advances in capturing their metabolic cross talk will be highlighted. The review further explores how the presence of additives and inhibiting factors affect the metabolic pathways. The critical insight into the reaction mechanism covered in this review may be helpful to optimize and upgrade the anaerobic digestion system.  相似文献   
8.
9.
Strain SBT is a new, strictly anaerobic, gram-negative, nonmotile, non-sporeforming, rod-shaped bacterium that degrades benzoate and certain fatty acids in syntrophic association with hydrogen/formate-using microorganisms. Strain SBT produced approximately 3 mol of acetate and 0.6 mol of methane per mol of benzoate in coculture with Methanospirillum hungatei strain JF1. Saturated fatty acids, some unsaturated fatty acids, and methyl esters of butyrate and hexanoate also supported growth of strain SBT in coculture with Desulfovibrio strain G11. Strain SBT grew in pure culture with crotonate, producing acetate, butyrate, caproate, and hydrogen. The molar growth yield was 17 ± 1 g cell dry mass per mol of crotonate. Strain SBT did not grow with fumarate, iron(III), polysulfide, or oxyanions of sulfur or nitrogen as electron acceptors with benzoate as the electron donor. The DNA base composition of strain SBT was 43.1 mol% G+C. Analysis of the 16 S rRNA gene sequence placed strain SBT in the δ-subdivision of the Proteobacteria, with sulfate-reducing bacteria. Strain SBT was most closely related to members of the genus Syntrophus. The clear phenotypic and genotypic differences between strain SBT and the two described species in the genus Syntrophus justify the formation of a new species, Syntrophus aciditrophicus. Received: 2 June 1998 / Accepted: 16 November 1998  相似文献   
10.
The pathway of fermentative benzoate degradation by the syntrophically fermenting bacterium Syntrophus gentianae was studied by measurement of enzyme activities in cell-free extracts. Benzoate was activated by a benzoate-CoA ligase reaction, forming AMP and pyrophosphate, which was subsequently cleaved by a membrane-bound proton-translocating pyrophosphatase. Glutaconyl-CoA (formed from hypothetical pimelyl-CoA and glutaryl-CoA intermediates) was decarboxylated to crotonyl-CoA by a sodium-ion-dependent membrane-bound glutaconyl-CoA decarboxylase, a biotin enzyme that could be inhibited by avidin. The overall energy budget of this fermentation could be balanced only if the dearomatizing reduction of benzoyl-CoA is assumed to produce cyclohexene carboxyl-CoA rather than cyclohexadiene carboxyl-CoA, although experimental evidence of this reaction is still insufficient. With this assumption, benzoate degradation by S. gentianae can be balanced to yield one-third to two-thirds of an ATP unit per benzoate degraded, in accordance with earlier measurements of whole-cell energetics. Received: 5 August 1998 / Accepted: 18 February 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号