首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   1篇
  国内免费   2篇
  2021年   1篇
  2019年   2篇
  2017年   2篇
  2015年   2篇
  2014年   6篇
  2013年   4篇
  2012年   5篇
  2011年   6篇
  2010年   3篇
  2009年   4篇
  2008年   5篇
  2007年   6篇
  2006年   6篇
  2005年   4篇
  2004年   6篇
  2003年   4篇
  2002年   1篇
  2000年   2篇
  1999年   3篇
  1997年   1篇
  1995年   1篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
1.
2.
Yeast studies identified the evolutionarily conserved core ATG genes responsible for autophagosome formation. However, the SNARE-dependent machinery involved in autophagosome fusion with the vacuole in yeast is not conserved. We recently reported that the SNARE complex consisting of Syx17 (Syntaxin 17), ubisnap (SNAP-29) and Vamp7 is required for the fusion of autophagosomes with late endosomes and lysosomes in Drosophila. Syx17 mutant flies are viable but exhibit neuronal dysfunction, locomotion defects and premature death. These data point to the critical role of autophagosome clearance in organismal homeodynamics.  相似文献   
3.
Opportunistic viruses are a major problem for immunosuppressed individuals, particularly following organ or stem cell transplantation. Current treatments are non-existent or suffer from problems such as high toxicity or development of resistant strains. We previously published that a trafficking inhibitor that targets a host protein greatly reduces the replication of human cytomegalovirus. This inhibitor was also shown to be moderately effective against polyomaviruses, another family of opportunistic viruses. We have developed a panel of analogues for this inhibitor and have shown that these analogues maintain their high efficacy against HCMV, while substantially lowering the concentration required to inhibit polyomavirus replication. By targeting a host protein these compounds are able to inhibit the replication of two very different viruses. These observations open up the possibility of pan-viral inhibitors for immunosuppressed individuals that are effective against multiple, diverse opportunistic viruses.  相似文献   
4.
The interferon-induced human MxA protein belongs to the class of dynamin-like, large guanosine-5'-triphosphatases that are involved in intracellular vesicle trafficking and organelle homeostasis. MxA shares many properties with the other members of this protein superfamily, including the propensity to self-assemble and to associate with lipid membranes. However, MxA is unique in that it has antiviral activity and inhibits the replication of several RNA viruses. Here, we determined the role of membranes for the antiviral function of MxA using LaCrosse-bunyavirus (LACV). We show that MxA does not affect trafficking and sorting of viral glycoproteins but binds and mislocates the viral nucleocapsid (N) protein into membrane-associated, large perinuclear complexes. We further demonstrate that MxA localizes to a subcompartment of the smooth endoplasmic reticulum where the viral N protein accumulates. In infected MxA-expressing cells, oligomeric MxA/N complexes are formed in close association with COP-I-positive vesicular-tubular membranes. Our results suggest that this membrane compartment is the preferred place where MxA and N interact, leading to efficient sequestration and missorting of an essential viral component.  相似文献   
5.
Intracellular vesicle trafficking is mediated by a set of SNARE proteins in eukaryotic cells. Several SNARE proteins are required for vacuolar protein transport and vacuolar biogenesis in Saccharomyces cerevisiae. A search of the Schizosaccharomyces pombe genome database revealed a total of 17 SNARE-related genes. Although no homologs of Vam3p, Nyv1p, and Vam7p have been found in S. pombe, we identified one SNARE-like protein that is homologous to S. cerevisiae Pep12p. However, the disruptants transport vacuolar hydrolase CPY (SpCPY) to the vacuole normally, suggesting that the Pep12 homolog is not required for vacuolar protein transport in S. pombe cells. To identify the SNARE protein(s) involved in Golgi-to-vacuole protein transport, we have deleted four SNARE homolog genes in S. pombe. SpCPY was significantly missorted to the cell surface on deletion of one of the SNARE proteins, Fsv1p (SPAC6F12.03c), with no apparent S. cerevisiae ortholog. In addition, sporulation, endocytosis, and in vivo vacuolar fusion appear to be normal in fsv1Delta cells. These results showed that Fsv1p is mainly involved in vesicle-mediated protein transport between the Golgi and vacuole in S. pombe cells.  相似文献   
6.
The formation of the synaptic core (SNARE) complex constitutes a crucial step in synaptic vesicle fusion at the nerve terminal. The interaction of synaptotagmin I with this complex potentially provides a means of conferring Ca2+-dependent regulation of exocytosis. However, the subcellular compartments in which interactions occur and their modulation by Ca2+ influx remain obscure. Sodium dodecyl sulfate (SDS)-resistant core complexes, associated with synaptotagmin I, were enriched in rat brain fractions containing plasma membranes and docked synaptic vesicles. Depolarization of synaptosomes triggered [3H]GABA release and Ca2+-dependent dissociation of synaptotagmin from the core complex. In perforated synaptosomes, synaptotagmin dissociation was induced by Ca2+ (30-300 microM) but not Sr2+ (1 mM); it apparently required intact membrane bilayers but did not result in disassembly of trimeric SNARE complexes. Synaptotagmin was not associated with unstable v-SNARE/t-SNARE complexes, present in fractions containing synaptic vesicles and cytoplasm. These complexes acquired SDS resistance when N-ethylmaleimide-sensitive fusion protein (NSF) was inhibited with N-ethylmaleimide or adenosine 5'-O-(3-thiotriphosphate), suggesting that constitutive SNARE complex disassembly occurs in undocked synaptic vesicles. Our findings are consistent with models in which the Ca2+ triggered release of synaptotagmin precedes vesicle fusion. NSF may then dissociate ternary core complexes captured by endocytosis and recycle/prime individual SNARE proteins.  相似文献   
7.
The Golgi associated retrograde protein complex (GARP) or Vps fifty-three (VFT) complex is part of cellular inter-compartmental transport systems. Here we report the identification of the VFT tethering factor complex and its interactions in mammalian cells. Subcellular fractionation shows that human Vps proteins are found in the smooth membrane/Golgi fraction but not in the cytosol. Immunostaining of human Vps proteins displays a vesicular distribution most concentrated at the perinuclear envelope. Co-staining experiments with endosomal markers imply an endosomal origin of these vesicles. Significant accumulation of VFT complex positive endosomes is found in the vicinity of the Trans Golgi Network area. This is in accordance with a putative role in Golgi associated transport processes. In Saccharomyces cerevisiae, GARP is the main effector of the small GTPase Ypt6p and interacts with the SNARE Tlg1p to facilitate membrane fusion. Accordingly, the human homologue of Ypt6p, Rab6, specifically binds hVps52. In human cells, the "orphan" SNARE Syntaxin 10 is the genuine binding partner of GARP mediated by hVps52. This reveals a previously unknown function of human Syntaxin 10 in membrane docking and fusion events at the Golgi. Taken together, GARP shows significant conservation between various species but diversification and specialization result in important differences in human cells.  相似文献   
8.
Membrane-type 1 matrix metalloproteinase (MT1-MMP) localized on the plasma membrane plays a central role in various normal biological responses including tissue remodeling, wound heeling, and angiogenesis and in cancer cell invasion and metastasis, by functioning as a collagenase and activating other matrix metalloproteinases. In order to elucidate the molecular mechanism of the MT1-MMP targeted localization on the plasma membrane, we examined the participation of syntaxin proteins in MT1-MMP intracellular transport to the plasma membrane in human gastric epithelial AGS cells. Western blotting showed that syntaxin 3 and 4 proteins, which are known to function in intracellular transport towards the plasma membrane, were expressed in AGS cells. Immunocytochemistry revealed that transient transfection of AGS cells with dominant-negative mutant syntaxin 4 decreased plasma membrane MT1-MMP expression. In contrast, transient transfection with either dominant-negative mutant syntaxin 3 or 7 did not affect MT1-MMP localization on the plasma membrane. Cell surface biotinylation assay and Matrigel chamber assay demonstrated that stable transfection with dominant-negative mutant syntaxin 4 decreased the amount of MT1-MMP on the plasma membranes and inhibited the cell invasiveness. We suggest that syntaxin 4 is involved in the intracellular transport of MT1-MMP toward the plasma membrane.  相似文献   
9.
The syntaxin family is implicated in intracellular vesicle traffic. We have recently identified taxilin, a novel syntaxin-binding protein, which has a long coiled-coil region in its C-terminal half. A database search has revealed the presence of two other molecules having a long coiled-coil region homologous to that of taxilin in mammals. Then, we here attempted to isolate and characterize the two molecules. Both the two molecules stoichiometrically interacted with several syntaxin family members. Then, we renamed original taxilin alpha-taxilin and named the two molecules beta- and gamma-taxilins, respectively. Beta-taxilin was a human homologue of chicken MDP77. Gamma-taxilin was an uncharacterized protein and Northern blot analysis revealed that gamma-taxilin was ubiquitously expressed. Beta- and gamma-taxilins preferentially interacted with syntaxin-1a and -4, respectively. The taxilin family members mutually interacted with the syntaxin family members. These results indicate that there is the taxilin family composed of at least three members in mammals.  相似文献   
10.
Secretory granules (SGs) are considered to be generated as immature granules and to mature by condensation of their contents. In this study, SGs of parotid gland were separated into low-, medium-, and high-density granule fractions by Percoll-density gradient centrifugation, since it was proposed that the density corresponds to the degree of maturation. The observation with electron microscopy showed that granules in the three fractions were very similar. The average diameter of high-density granules was a little but significantly larger than that of low-density granules. Although the three fractions contained amylase, suggesting that they are all SGs, distribution of membrane proteins was markedly different. Syntaxin6 and VAMP4 were localized in the low-density granule fraction, while VAMP2 was concentrated in the high-density granule fraction. Immunoprecipitation with anti-syntaxin6 antibody caused coprecipitation of VAMP2 from the medium-density granule fraction without solubilization, but not from Triton X-100-solubilized fraction, while VAMP4 was coprecipitated from both fractions. Therefore, VAMP2 is present on the same granules, but is separated from syntaxin6 and VAMP4, which are expected to be removed from immature granules. These results suggest that the medium-density granules are intermediates from low- to high-density granules, and that the membrane components of SGs dynamically change by budding and fusion during maturation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号