首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   738篇
  免费   85篇
  国内免费   32篇
  2024年   1篇
  2023年   6篇
  2022年   9篇
  2021年   13篇
  2020年   16篇
  2019年   24篇
  2018年   16篇
  2017年   22篇
  2016年   19篇
  2015年   17篇
  2014年   31篇
  2013年   64篇
  2012年   27篇
  2011年   40篇
  2010年   38篇
  2009年   43篇
  2008年   45篇
  2007年   39篇
  2006年   39篇
  2005年   36篇
  2004年   31篇
  2003年   24篇
  2002年   28篇
  2001年   26篇
  2000年   19篇
  1999年   23篇
  1998年   28篇
  1997年   14篇
  1996年   13篇
  1995年   12篇
  1994年   17篇
  1993年   9篇
  1992年   20篇
  1991年   5篇
  1990年   6篇
  1989年   3篇
  1988年   5篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1984年   5篇
  1983年   1篇
  1982年   2篇
  1980年   2篇
  1979年   1篇
  1978年   4篇
  1976年   1篇
排序方式: 共有855条查询结果,搜索用时 31 毫秒
1.
2.
3.
Summary A 3D1H–15N–13C triple resonance experiment is presented that contains exclusively cross peaks between the1HN and15N nuclei of one residue with the H of the preceding residue. The pulse sequence, designed to minimize the time coherence, is transverse on nuclei with short T2 values. The experiment consists of coherence transfers via one-bond couplings from the HN via N, CO, C to the H and back to the HN for detection; it is called HN(COCA)HA. The experiment was tested on uniformly15N- and13C-enriched T4 lysozyme.  相似文献   
4.
In a systematic attempt to identify residues important in the folding and stability of T4 lysozyme, five amino acids within alpha-helix 126-134 were substituted by alanine, either singly or in selected combinations. Together with three alanines already present in the wild-type structure this provided a set of mutant proteins with up to eight alanines in sequence. All the variants behaved normally, suggesting that the majority of residues in the alpha-helix are nonessential for the folding of T4 lysozyme. Of the five individual alanine substitutions it is inferred that four result in slightly increased protein stability and one, the replacement of a buried leucine with alanine, substantially decreased stability. The results support the idea that alanine is a residue of high helix propensity. The change in protein stability observed for each of the multiple mutants is approximately equal to the sum of the energies associated with each of the constituent substitutions. All of the variants could be crystallized isomorphously with wild-type lysozyme, and, with one trivial exception, their structures were determined at high resolution. Substitution of the largely solvent-exposed residues Asp 127, Glu 128, and Val 131 with alanine caused essentially no change in structure except at the immediate site of replacement. Substitutions of the partially buried Asn 132 and the buried Leu 133 with alanine were associated with modest (< or = 0.4 A) structural adjustments. The structural changes seen in the multiple mutants were essentially a combination of those seen in the constituent single replacements. The different replacements therefore act essentially independently not only so far as changes in energy are concerned but also in their effect on structure. The destabilizing replacement Leu 133-->Ala made alpha-helix 126-134 somewhat less regular. Incorporation of additional alanine replacements tended to make the helix more uniform. For the penta-alanine variant a distinct change occurred in a crystal-packing contact, and the "hinge-bending angle" between the amino- and carboxy-terminal domains changed by 3.6 degrees. This tends to confirm that such hinge-bending in T4 lysozyme is a low-energy conformational change.  相似文献   
5.
The three-dimensional structure of a modified human lysozyme (HL), Glu 53 HL, in which Asp 53 was replaced by Glu, has been determined at 1.77 A resolution by X-ray analysis. The backbone structure of Glu 53 HL is essentially the same as the structure of wild-type HL. The root mean square difference for the superposition of equivalent C alpha atoms is 0.141 A. Except for the Glu 53 residue, the structure of the active site region is largely conserved between Glu 53 HL and wild-type HL. However, the hydrogen bond network differs because of the small shift or rotation of side chain groups. The carboxyl group of Glu 53 points to the carboxyl group of Glu 35 with a distance of 4.7 A between the nearest carboxyl oxygen atoms. A water molecule links these carboxyl groups by a hydrogen bond bridge. The active site structure explains well the fact that the binding ability for substrates does not significantly differ between Glu 53 HL and wild-type HL. On the other hand, the positional and orientational change of the carboxyl group of the residue 53 caused by the mutation is considered to be responsible for the low catalytic activity (ca. 1%) of Glu 53 HL. The requirement of precise positioning for the carboxyl group suggests the possibility that the Glu 53 residue contributes more than a simple electrostatic stabilization of the intermediate in the catalysis reaction.  相似文献   
6.
On protein solubility in organic solvent   总被引:1,自引:0,他引:1  
Solubility of a model protein, hen egg-white lysozyme, was investigated in a wide range of neat nonaqueous solvents and binary mixtures thereof. All solvents that are protic, very hydrophilic, and polar readily dissolve more than 10 mg/mL of lysozyme (lyophilized from aqueous solution of pH 6.0). Only a marginal correlation was found between the lysozyme solubility in a non-aqueous solvent and the letter's dielectric constant or Hildebrand solubility parameter, and no correlation was observed with the dipole moment. Lysozyme dissolved in dimethyl sulfoxide (DMSO) could be precipitated by adding protein nondissolving co-solvents, although the enzyme had a tendency to form supersaturated solutions in such mixtures. The solubility of lysozyme, both in an individual solvent (1,5-pentanediol) and in binary solvent mixtures (DMSO/acetonitrile), markedly increased when the pH of the enzyme aqueous solution prior to lyophilization was moved away from the proteins's isoelectric point. (c) 1994 John Wiley & Sons, Inc.  相似文献   
7.
A structural basis for the interaction of urea with lysozyme.   总被引:5,自引:4,他引:1       下载免费PDF全文
The effect of urea on the crystal structure of hen egg-white lysozyme has been investigated using X-ray crystallography. High resolution structures have been determined from crystals grown in the presence of 0, 0.7, 2, 3, 4, and 5 M urea and from crystals soaked in 9 M urea. All the forms are essentially isomorphous with the native type II crystals, and the derived structures exhibit excellent geometry and RMS differences from ideality in bond distances and angles. Comparison of the urea complex structures with the native enzyme (type II form, at 1.5 A resolution) indicates that the effect of urea is minimal over the concentration range studied. The mean difference in backbone conformation between the native enzyme and its urea complexes varies from 0.18 to 0.49 A. Conformational changes are limited to flexible surface loops (Thr 69-Asn 74, Ser 100-Asn 103), the active site loop (Asn 59-Cys 80), and the C-terminus (Cys 127-Leu 129). Urea molecules are bound to distinct sites on the surface of the protein. One molecule is bound to the active site cleft's C subsite, at all concentrations, in a fashion analogous to that of the N-acetyl substituent of substrate and inhibitor sugars normally bound to this site. Occupation of this subsite by urea alone does not appear to induce the conformational changes associated with inhibitor binding.  相似文献   
8.
To assess the respective roles of local and long-range interactions during protein folding, the influence of the native disulfide bonds on the early formation of secondary structure was investigated using continuous-flow circular dichroism. Within the first 4 ms of folding, lysozyme with intact disulfide bonds already had a far-UV CD spectrum reflecting large amounts of secondary structure. Conversely, reduced lysozyme remained essentially unfolded at this early folding time. Thus, native disulfide bonds not only stabilize the cfinal conformation of lysozyme but also provide, in early folding intermediates, the necessary stabilization that favors the formation of secondary structure.  相似文献   
9.
We have developed theoretical models for analysis of X-ray diffuse scattering from protein crystals. A series of models are proposed to be used for experimental data with different degrees of precision. First, we propose the normal mode model, where conformational dynamics of a protein is assumed to occur mostly in a limited conformational subspace spanned by a small number of low-frequency normal modes in the protein. When high precision data are available, variances and covariances of the normal mode variables can be determined from experimental data using this model. For experimental data with lower degrees of precision, we introduce a series of simpler models. These models express the covariance matrix using relatively simple empirical correlation functions by assuming the correlation between a pair of atoms to be isotropic. As an application of these simpler models, we calculate diffuse-scattering patterns from a human lysozyme crystal to examine how each adjustable parameter in the models affects general features of the resulting patterns. The results of the calculation are summarized as follows. (1) The higher order scattering makes a significant contribution at high resolutions. (2) The resulting simulated patterns are sensitive to changes in correlation lengths of about 1 Å, as well as to changes of the functional form of the correlation function. (3) But only the “average” value of the intra- and intermolecular correlation lengths seems to determine the gross features of the pattern. (4) The effect of the atom-dependent amplitude of fluctuations is difficult to observe. © 1994 John Wiley & Sons, Inc.  相似文献   
10.
生物制品GMP(WHO,1992)目录1.本指南范围2.原则3.人员4.厂房和设备5.动物设施及管理6.生产7.标签8.批加工记录(格式)和分发记录9.质量保证和质量控制1本指南范围本指南系作为《药品GMP》(见WHOTRS,NO.823)的补充。生...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号