首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1431篇
  免费   44篇
  国内免费   18篇
  2023年   3篇
  2022年   13篇
  2021年   22篇
  2020年   9篇
  2019年   30篇
  2018年   26篇
  2017年   14篇
  2016年   20篇
  2015年   75篇
  2014年   141篇
  2013年   123篇
  2012年   134篇
  2011年   139篇
  2010年   80篇
  2009年   73篇
  2008年   47篇
  2007年   69篇
  2006年   49篇
  2005年   53篇
  2004年   32篇
  2003年   45篇
  2002年   27篇
  2001年   18篇
  2000年   15篇
  1999年   15篇
  1998年   14篇
  1997年   14篇
  1996年   16篇
  1995年   19篇
  1994年   19篇
  1993年   12篇
  1992年   15篇
  1991年   14篇
  1990年   14篇
  1989年   8篇
  1988年   9篇
  1987年   6篇
  1986年   5篇
  1985年   10篇
  1984年   6篇
  1983年   7篇
  1982年   5篇
  1981年   6篇
  1980年   4篇
  1979年   2篇
  1977年   3篇
  1976年   3篇
  1974年   2篇
  1973年   2篇
  1970年   2篇
排序方式: 共有1493条查询结果,搜索用时 15 毫秒
1.
2.
The bacterial H+-translocating NADH:quinone oxidoreductase (NDH-1) catalyzes electron transfer from NADH to quinone coupled with proton pumping across the cytoplasmic membrane. The NuoK subunit (counterpart of the mitochondrial ND4L subunit) is one of the seven hydrophobic subunits in the membrane domain and bears three transmembrane segments (TM1–3). Two glutamic residues located in the adjacent transmembrane helices of NuoK are important for the energy coupled activity of NDH-1. In particular, mutation of the highly conserved carboxyl residue (KGlu-36 in TM2) to Ala led to a complete loss of the NDH-1 activities. Mutation of the second conserved carboxyl residue (KGlu-72 in TM3) moderately reduced the activities. To clarify the contribution of NuoK to the mechanism of proton translocation, we relocated these two conserved residues. When we shifted KGlu-36 along TM2 to positions 32, 38, 39, and 40, the mutants largely retained energy transducing NDH-1 activities. According to the recent structural information, these positions are located in the vicinity of KGlu-36, present in the same helix phase, in an immediately before and after helix turn. In an earlier study, a double mutation of two arginine residues located in a short cytoplasmic loop between TM1 and TM2 (loop-1) showed a drastic effect on energy transducing activities. Therefore, the importance of this cytosolic loop of NuoK (KArg-25, KArg-26, and KAsn-27) for the energy transducing activities was extensively studied. The probable roles of subunit NuoK in the energy transducing mechanism of NDH-1 are discussed.  相似文献   
3.
Two mutants that grew faster than the wild-type (WT) strain under high light conditions were isolated from Synechocystis sp. strain PCC 6803 transformed with a transposon-bearing library. Both mutants had a tag in ssl1690 encoding NdhO. Deletion of ndhO increased the activity of NADPH dehydrogenase (NDH-1)-dependent cyclic electron transport around photosystem I (NDH-CET), while overexpression decreased the activity. Although deletion and overexpression of ndhO did not have significant effects on the amount of other subunits such as NdhH, NdhI, NdhK, and NdhM in the cells, the amount of these subunits in the medium size NDH-1 (NDH-1M) complex was higher in the ndhO-deletion mutant and much lower in the overexpression strain than in the WT. NdhO strongly interacts with NdhI and NdhK but not with other subunits. NdhI interacts with NdhK and the interaction was blocked by NdhO. The blocking may destabilize the NDH-1M complex and repress the NDH-CET activity. When cells were transferred from growth light to high light, the amounts of NdhI and NdhK increased without significant change in the amount of NdhO, thus decreasing the relative amount of NdhO. This might have decreased the blocking, thereby stabilizing the NDH-1M complex and increasing the NDH-CET activity under high light conditions.  相似文献   
4.
The effects of some gangliosides on active uptake of nonmetabolizable alpha-aminoisobutyric acid (AIB) and Na+, K+-ATPase and Ca2+, Mg2+-ATPase activities in superior cervical ganglia (SCG) and nodose ganglia (NG) excised from adult rats were examined during aerobic incubation at 37 degrees C for 2 h. In NG, amino acid uptake was greatly accelerated with the addition of galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylgluc osyl ceramide (GM1) (85%) and also with N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosyl ceramide (GM2) or [N-acetylneuraminyl]-galactosyl-N-acetylgalactosaminyl-[N-acetyl- neuraminyl]-galactosylglucosyl ceramide (GD1a) (43% each) compared with a nonaddition control at a 5 nM concentration. Under identical conditions, Na+, K+-ATPase activity was strongly stimulated with GM1 (180%) and GD1a (93%), whereas Ca2+, Mg2+-ATPase activity showed no change. In SCG, on the other hand, AIB uptake was apparently inhibited (-27%) by addition of GM1, with a slight decrease in Na+, K+-ATPase but no change in Ca2+, Mg2+-ATPase activity in the tissue. Both asialo-GM1, in which N-acetylneuraminic acid is deficient, and Forssman glycolipid, which is not present in nervous tissue, failed to produce any significant increase in both SCG and NG not only in amino acid uptake, but also in Na+, K+-ATPase activity. A kinetic study of active AIB uptake showed that GM1 ganglioside produced an increase in Km with no change in Vmax in SCG, whereas it caused a decrease in Km with a slight increase in Vmax in NG. Treatment of NG and SCG with neuraminidase from Vibrio cholerae, an enzyme that split off sialic acid from polysialoganglioside, leaving GM1 intact, caused little inhibition of the amino acid uptake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
5.
Summary Injection of wheat-germ agglutinin-horseradish peroxidase conjugate (WGA-HRP) into the superior cervical ganglion (SCG) of the rat results in accumulation of WGA-HRP in sympathetic postganglionic neurons in the contralateral SCG. The sympathetic pathways involved and the mechanism underlying the labeling were investigated. The labeling in neurons in the contralateral SCG was apparent 6 h after injection and increased in intensity with longer survival times. The number of labeled neurons reached 1300 at 72 h after the injection. Transection of the external (ECN) or internal carotid nerves (ICN) resulted in considerable reduction in the number of labeled neurons. Combined transection of both ECN and ICN virtually eliminated labeling in the contralateral SCG. This provides strong evidence that these two nerves are the major pathways for WGA-HRP transport out of the SCG. No labeling was observed in the contralateral SCG following injection of horseradish peroxidase (HRP). Therefore, it seems unlikely that a direct nerve connection exists between the bilateral ganglia. Instead, the labeling of contralateral SCG neurons appears to depend on the transneuronal transport capacity of WGA-HRP, which conveys the marker in an anterograde direction along the postganglionic fibers to terminals in sympathetic target organs, and then delivers it transneuronally to contralateral SCG neurons. We suggest that the sympathetic nerve fibers originating in the bilateral SCGs run intermingled and are in close contact in their peripheral target organs.  相似文献   
6.
N-Acetylaspartylglutamate (NAAG) is a neuropeptide localized to several putative glutamatergic neuronal systems, including the rodent optic pathway. To determine whether the peptide is released by depolarization, the superior colliculus of the rat was perfused with 2 microCi of [3H]NAAG, then with Krebs-bicarbonate buffer for 1 h, using a microdialysis system. Subsequently, 10-min fractions were collected and analyzed by HPLC for [3H]NAAG. Addition of 100 microM veratridine resulted in a several-fold increase in the evoked release of [3H]NAAG that was virtually abolished by coperfusion with Ca2+-free Krebs buffer containing 1 mM EGTA. When [3H]glutamate was used as the precursor, veratridine depolarization resulted in only an 80% increase in the release of [3H]NAAG. Prior enucleation of the right eye reduced the spontaneous release of [3H]NAAG by 50%, and the veratridine-evoked release by greater than 85%, from the left superior colliculus. These results suggest that NAAG is released upon depolarization and may serve as a neurotransmitter/neuromodulator in the optic tract.  相似文献   
7.
In this study we compared the properties of cytochrome-c oxidase (COX) in cultured fibroblasts from two patients with Leigh Syndrome with COX from control fibroblasts. The fibroblasts from patients showed decreased growth reates and elevated lactate production. COX activity of patients fibroblasts was about 25% of control. Kinetic studies with isolated mitochondria showed a higher Km for cytochrome c and a markedly reduced molecular turnover of COX from patients, indicating a different structure of the enzyme. A biphasic change of COX activity was obtained by titration of dodecylmaltoside solubilized mitochondria from control fibroblasts with increasing concentrations of anions. With patient mitochondria we found only the inhibiting phase of COX activity and, in contrast to control mitochondria, irreversible inhibition of COX activity by guanidinium chloride. ELISA titrations with monoclonal antibodies to subunit II, IV, Vab, VIac and VIIab indicated a normal amount of mitochondrial coded subunit II, but a reduced amound of nuclear coded subunits. The data indicate incompletely assembled nuclear coded subunits of COX from patient fibroblasts.  相似文献   
8.
Active uptake of a labelled nonmetabolizable amino acid, alpha-aminoisobutyric acid (AIB), into isolated superior cervical sympathetic ganglia (SCG) excised from adult rats was considerably stimulated by the addition of either norepinephrine (NE, 50 microM) or 3,4-dihydroxyphenylethylamine (dopamine, DA, 100 microM) to the medium during aerobic incubation for 2 h at 37 degrees C. The NE-induced increase in AIB uptake was significantly antagonized by the addition of an alpha 1-adrenoceptor antagonist (prazosin, 10 microM) in SCG axotomized 1 week prior to the examination, in which most of the ganglionic neurons had degenerated and reactive proliferation of the satellite glial components was in progress. The addition of neither acetylcholine (ACh, 1 mM) plus eserine (0.1 mM) nor cyclic nucleotides (1 mM) changed the AIB uptake by the SCG. In the axotomized SCG, the NE-evoked increase in AIB uptake was much more pronounced than that of intact or denervated SCG. A kinetic study of the active AIB uptake in the SCG showed that NE produced a decrease of the Km value and an increase in the Vmax, especially in the axotomized SCG. Ganglionic Na+, K+-ATPase activity was greatly stimulated in the presence of NE, but not by ACh. These results strongly suggest that the NE-induced enhancement of active AIB uptake in the isolated SCG is occurring in glial cells rather than in neuronal cells, with a possible alteration of membrane properties for amino acid uptake and with an apparent regulation by the stimulated transport enzyme Na+, K+-ATPase.  相似文献   
9.
Phorbol 12,13-dibutyrate (PDBu) increased the production of 3,4-dihydroxyphenylalanine (DOPA) in the superior cervical ganglion of the rat. This effect occurred without a detectable lag and persisted for at least 90 min of incubation. The action of PDBu was half-maximal at a concentration of approximately 0.1 microM; at high concentrations, PDBu produced about a twofold increase in DOPA accumulation. PDBu increased DOPA production in decentralized ganglia and in ganglia incubated in a Ca2+-free medium. The action of PDBu was additive with the actions of dimethylphenylpiperazinium, muscarine, and 8-Br-cyclic AMP, all of which also increase DOPA accumulation, and was not inhibited by the cholinergic antagonists hexamethonium (3 mM) and atropine (6 microM). Finally, PDBu did not increase the content of cyclic AMP in the ganglion. Thus, the action of PDBu does not appear to be mediated by the release of neurotransmitters from preganglionic nerve terminals, by the stimulation of cholinergic receptors in the ganglion, or by an increase in ganglionic cyclic AMP. PDBu also increased the incorporation of 32Pi into tyrosine hydroxylase. PDBu activates protein kinase C, which in turn may phosphorylate tyrosine hydroxylase and increase the rate of DOPA synthesis in the ganglion.  相似文献   
10.
We have developed a rapid, simple, specific, and very sensitive bioluminescence method for the measurement of L-glutamate (L-Glu). Oxidation of L-Glu by glutamate dehydrogenase has been coupled with bacterial FMN reductase and luciferase. Light production (i.e., peak height or integral) was linear from less than 0.5 to 500 pmol of L-Glu. Potential interfering substances that may be encountered in brain tissue have been identified. The most potent inhibitors were ascorbate and the biogenic amines. Procedures that conferred long-term stability of the reagent mixture (greater than 8 h) were established. Bioluminescence analysis of L-Glu content in brain tissue extracts, fractions from release experiments, and human CSF corroborated respective results obtained by HPLC analysis. In this study, we have applied the method to monitor changes in the KCl-evoked release of endogenous L-Glu from milligram amounts of brain tissue, i.e., from lateral geniculate nucleus and superior colliculus after visual cortex ablation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号