首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
  2022年   2篇
  2021年   5篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2016年   1篇
  2015年   2篇
  2014年   6篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
排序方式: 共有35条查询结果,搜索用时 93 毫秒
1.
The bulk of DNA damage caused by ionizing radiation (IR) is generally repaired within hours, yet a subset of DNA lesions may persist even for long periods of time. Such persisting IR-induced foci (pIRIF) co-associate with PML nuclear bodies (PML-NBs) and are among the characteristics of cellular senescence. Here we addressed some fundamental questions concerning the nature and determinants of this co-association, the role of PML-NBs at such sites, and the reason for the persistence of DNA damage in human primary cells. We show that the persistent DNA lesions are devoid of homologous recombination (HR) proteins BRCA1 and Rad51. Our super-resolution microscopy-based analysis showed that PML-NBs are juxtaposed to and partially overlap with the pIRIFs. Notably, depletion of 53BP1 resulted in decreased intersection between PML-NBs and pIRIFs implicating the RNF168-53BP1 pathway in their interaction. To test whether the formation and persistence of IRIFs is PML-dependent and to investigate the role of PML in the context of DNA repair and senescence, we genetically deleted PML in human hTERT-RPE-1 cells. Unexpectedly, upon high-dose IR treatment, cells displayed similar DNA damage signalling, repair dynamics and kinetics of cellular senescence regardless of the presence or absence of PML. In contrast, the PML knock-out cells showed increased sensitivity to low doses of IR and DNA-damaging agents mitomycin C, cisplatin and camptothecin that all cause DNA lesions requiring repair by HR. These results, along with enhanced sensitivity of the PML knock-out cells to DNA-PK and PARP inhibitors implicate PML as a factor contributing to HR-mediated DNA repair.  相似文献   
2.
For the improved understanding of biological systems on the nanoscale, it is necessary to enhance the resolution of light microscopy in the visible wavelength range beyond the limits of conventional epifluorescence microscopy (optical resolution of about 200 nm laterally, 600 nm axially). Recently, various far-field methods have been developed allowing a substantial increase of resolution ("superresolution microscopy", or "lightoptical nanoscopy"). This opens an avenue to 'nano-image' intact and even living cells, as well as other biostructures like viruses, down to the molecular detail. Thus, it is possible to combine light optical spatial nanoscale information with ultrastructure analyses and the molecular interaction information provided by molecular cell biology. In this review, we describe the principles of spectrally assigned localization microscopy (SALM) of biological nanostructures, focusing on a special SALM approach, spectral precision distance/position determination microscopy (SPDM) with physically modified fluorochromes (SPDM(Phymod) . Generally, this SPDM method is based on high-precision localization of fluorescent molecules, which can be discriminated using reversibly bleached states of the fluorophores for their optical isolation. A variety of application examples is presented, ranging from superresolution microscopy of membrane and cytoplasmic protein distribution to dual-color SPDM of nuclear proteins. At present, we can achieve an optical resolution of cellular structures down to the 20-nm range, with best values around 5 nm (~1/100 of the exciting wavelength).  相似文献   
3.
Eukaryotic chromatin is a negatively charged polymer consisting of genomic DNA, histones, and various nonhistone proteins. Because of its highly charged character, the structure of chromatin varies greatly depending on the surrounding environment (i.e. cations etc.): from an extended 10-nm fiber, to a folded 30-nm fiber, to chromatin condensates/liquid-droplets. Over the last ten years, newly developed technologies have drastically shifted our view on chromatin from a static regular structure to a more irregular and dynamic one, locally like a fluid. Since no single imaging (or genomics) method can tell us everything and beautiful images (or models) can fool our minds, comprehensive analyses based on many technical approaches are important to capture actual chromatin organization inside the cell. Here we critically discuss our current view on chromatin and methodology used to support the view.  相似文献   
4.
Potassium (K+) ion channels are crucial in numerous cellular processes as they hyperpolarise a cell through K+ conductance, returning a cell to its resting potential. K+ channel mutations result in multiple clinical complications such as arrhythmia, neonatal diabetes and migraines. Since 1995, the regulation of K+ channels by phospholipids has been heavily studied using a range of interdisciplinary methods such as cellular electrophysiology, structural biology and computational modelling. As a result, K+ channels are model proteins for the analysis of protein-lipid interactions. In this review, we will focus on the roles of lipids in the regulation of K+ channels, and how atomic-level structures, along with experimental techniques and molecular simulations, have helped guide our understanding of the importance of phospholipid interactions.  相似文献   
5.
Chemical communication is underpinned by the fusion of neurotransmitter-containing synaptic vesicles with the plasma membrane at active zones. With the advent of super-resolution microscopy, the door is now opened to unravel the dynamic remodeling of synapses underpinning learning and memory. Imaging proteins with conventional light microscopy cannot provide submicron information vital to determining the nanoscale organization of the synapse. We will first review the current super-resolution microscopy techniques available to investigate the localization and movement of synaptic proteins and how they have been applied to visualize the synapse. We discuss the new techniques and analytical approaches have provided comprehensive insights into synaptic organization in various model systems. Finally, this review provides a brief update on how these super-resolution techniques and analyses have opened the way to a much greater understanding of the synapse, the fusion and compensatory endocytosis machinery.  相似文献   
6.
Extracellular vesicles (EVs) have prevalent roles in cancer biology and regenerative medicine. Conventional techniques for characterising EVs including electron microscopy (EM), nanoparticle tracking analysis (NTA) and tuneable resistive pulse sensing (TRPS), have been reported to produce high variability in particle count (EM) and poor sensitivity in detecting EVs below 50?nm in size (NTA and TRPS), making accurate and unbiased EV analysis technically challenging. This study introduces direct stochastic optical reconstruction microscopy (d-STORM) as an efficient and reliable characterisation approach for stem cell-derived EVs. Using a photo-switchable lipid dye, d-STORM imaging enabled rapid detection of EVs down to 20–30?nm in size with higher sensitivity and lower variability compared to EM, NTA and TRPS techniques. Imaging of EV uptake by live stem cells in culture further confirmed the potential of this approach for downstream cell biology applications and for the analysis of vesicle-based cell-cell communication.  相似文献   
7.
Physical contacts between organelles play a pivotal role in intracellular trafficking of metabolites. Monitoring organelle interactions in living cells using fluorescence microscopy is a powerful approach to functionally assess these cellular processes. However, detailed target acquisition is typically limited due to light diffraction. Furthermore, subcellular compartments such as lipid droplets and mitochondria are highly dynamic and show significant subcellular movement. Thus, high-speed acquisition of these organelles with extended-resolution is appreciated. Here, we present an imaging informatics pipeline enabling spatial and time-resolved analysis of the dynamics and interactions of fluorescently labeled lipid droplets and mitochondria in a fibroblast cell line. The imaging concept is based on multispectral confocal laser scanning microscopy and includes high-speed resonant scanning for fast spatial acquisition of organelles. Extended-resolution is achieved by the recording of images at minimized pinhole size and by post-processing of generated data using a computational image restoration method. Computation of inter-organelle contacts is performed on basis of segmented spatial image data. We show limitations of the image restoration and segmentation part of the imaging informatics pipeline. Since both image processing methods are implemented in other related methodologies, our findings will help to identify artifacts and the false-interpretation of obtained morphometric data. As a proof-of-principle, we studied how lipid load and overexpression of PLIN5, considered to be involved in the tethering of LDs and mitochondria, affects organelle association.  相似文献   
8.
The selective autophagic removal of mitochondria called mitophagy is an essential physiological signaling for clearing damaged mitochondria and thus maintains the functional integrity of mitochondria and cells. Defective mitophagy is implicated in several diseases, placing mitophagy as a target for drug development. The identification of key regulators of mitophagy as well as chemical modulators of mitophagy requires sensitive and reliable quantitative approaches. Since mitophagy is a rapidly progressing event and sub-microscopic in nature, live cell image-based detection tools with high spatial and temporal resolution is preferred over end-stage assays. We describe two approaches for measuring mitophagy in mammalian cells using stable cells expressing EGFP-LC3 – Mito-DsRed to mark early phase of mitophagy and Mitochondria-EGFP – LAMP1-RFP stable cells for late events of mitophagy. Both the assays showed good spatial and temporal resolution in wide-field, confocal and super-resolution microscopy with high-throughput adaptable capability. A limited compound screening allowed us to identify a few new mitophagy inducers. Compared to the current mitophagy tools, mito-Keima or mito-QC, the assay described here determines the direct delivery of mitochondrial components to the lysosome in real time mode with accurate quantification if monoclonal cells expressing a homogenous level of both probes are established. Since the assay described here employs real-time imaging approach in a high-throughput mode, the platform can be used both for siRNA screening or compound screening to identify key regulators of mitophagy at decisive stages.  相似文献   
9.
10.
For many years, it was believed that the laws of diffraction set a fundamental limit to the spatial resolution of conventional light microscopy. Major developments, especially in the past few years, have demonstrated that the diffraction barrier can be overcome both in the near- and far-field regime. Together with dynamic measurements, a wealth of new information is now emerging regarding the compartmentalization of cell membranes. In this review we focus on optical methods designed to explore the nanoscale architecture of the cell membrane, with a focal point on near-field optical microscopy (NSOM) as the first developed technique to provide truly optical super-resolution beyond the diffraction limit of light. Several examples illustrate the unique capabilities offered by NSOM and highlight its usefulness on cell membrane studies, complementing the palette of biophysical techniques available nowadays.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号