首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
  13篇
  2008年   1篇
  2006年   1篇
  2003年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1993年   3篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
The steady-state and dynamic photosynthetic response of two poplar species (Populus tremuloides and P. fremontii) to variations in photon flux density (PFD) were observed with a field portable gas exchange system. These poplars were shown to be very shade intolerant with high light saturation (800 to 1300 mol photons m–2 s–1) and light compensation (70 to 100 mol m–2 s–1) points. Understory poplar leaves showed no physiological acclimation to understory light environments. These plants become photosynthetically induced quickly (10 min). Activation of Rubisco was the primary limitation for induction, with stomatal opening playing only a minor role. Leaves maintained high stomatal conductances and stomata were unresponsive to variations in PFD. Leaves were very efficient at utilizing rapidly fluctuating light environments similar to those naturally occurring in canopies. Post-illumination CO2 fixation contributed proportionally more to the carbon gain of leaves during short frequent lightflecks than longer less frequent ones. The benefits of a more dynamic understory light environment for the carbon economy of these species are discussed.  相似文献   
2.
Canopy tree recruitment is inhibited by evergreen shrubs in many forests. In the southern Appalachian mountains of the USA, thickets of Rhododendron maximum L. restrict dominant canopy tree seedling survival and persistence. Using R. maximum as a model system, we examined available light under the thickets and the photosynthetic responses of seedlings of canopy tree species. We tested the hypothesis that the additional shading from under R. maximum drives carbon gain in seedlings below the threshold for growth and survival. A reduction in light under the thicket was found where canopy openness (derived from canopy photographs) under R. maximum was half the amount measured in forest without R. maximum. R.␣maximum also reduced direct radiation by 50% and diffuse radiation by 12–29% compared to forest without the shrub layer. Mean mid-day PPFD (photosynthetically active photon flux density between 1000 and 1400 h) under R. maximum (obtained from quantum sensors) was below 10 mol m−2 s−1 on both clear and overcast days and the amount of sunflecks greater than 10 mol m−2 s−1 PPFD was only 0–20 min per day. In contrast, forest without R. maximum received a mean PPFD of 18–25 mol m−2 s−1 on clear days and a cumulative sunfleck duration of 100–220 min per day in all sky conditions. Consistent with light availability between the sites, daily carbon gain in Quercus rubra L. seedlings was lower in forest with R. maximum compared to forest where the shrub was absent. The presence of the shrub layer also significantly suppressed average mid-day photosynthesis of both Q. rubra and Prunus serotina Ehrt. seedlings on 8 out of 11 measurement dates. However, parameters derived from light response curves between seedlings growing in forest sites with or without a thicket of R. maximum was significantly different only in A max (maximum photosynthetic rate), indicating a lack of further acclimation to the deeper shade under R. maximum. While the additional shade cast by R. maximum is sufficient to prevent the regeneration of tree seedlings under this shrub, there was sufficient heterogeneity in light under the thicket to imply that deep shade only partially explains the complete inhibition of regenerating canopy trees under R. maximum.  相似文献   
3.
Microstegium vimineum (Trin.) A. Camus, a shade-tolerant C4 grass, has spread throughout the eastern United States since its introduction in 1919. This species invades disturbed understory habitats along streambanks and surrounding mesic forests, and has become a major pest in areas such as Great Smoky Mountains National Park. The focus of this study was to characterize the photosynthetic induction responses of M. vimineum, specifically its ability to utilize low light and sunflecks, two factors that may be critical to invasive abilities and survival in the understory. In addition, we were curious about the ability of a grass with the C4 photosynthetic pathway to respond to sunflecks. Plants were grown under 25% and 50% ambient sunlight, and photosynthetic responses to both steady-state and variable light were determined. Plants grown in both 25% and 50% ambient sun became 90% light saturated between 750–850 μmol m−2 s−1; however, plants grown in 50% ambient sun had significantly higher maximum steady-state photosynthetic rates (16.09 ± 1.37 μmol m−2 s−1 vs. 12.71 ± 1.18 μmol m−2 s−1). Both groups of plants induced to 50% of the steady-state rate in 3–5 min, while it took 10–13 min to reach 90% of maximum rates, under both flashing and steady-state light. For both groups of plants, stomatal conductance during induction reached maximum rates in 6–7 min, after which rates decreased slightly. Upon return to low light, rates of induction loss and stomatal closure were very rapid in both groups of plants, but were more rapid in those grown in high light. Rapid induction and the ability to induce under flashing light may enable this species to invade and dominate mesic understory habitats, while rapid induction loss due to stomatal closure may prevent excess water loss when low light constrains photosynthesis. The C4 pathway itself does not appear to present an insurmountable barrier to the ability of this grass species to respond to sunflecks in an understory environment. Received: 21 February 1997 / Accepted: 10 October 1997  相似文献   
4.
Montgomery RA  Givnish TJ 《Oecologia》2008,155(3):455-467
Hawaiian lobeliads have radiated into habitats from open alpine bogs to densely shaded rainforest interiors, and show corresponding adaptations in steady-state photosynthetic light responses and associated leaf traits. Shaded environments are not uniformly dark, however, but punctuated by sunflecks that carry most of the photosynthetically active light that strikes plants. We asked whether lobeliads have diversified in their dynamic photosynthetic light responses and how dynamic responses influence daily leaf carbon gain. We quantified gas exchange and dynamic light regimes under field conditions for ten species representing each major Hawaiian sublineage. Species in shadier habitats experienced shorter and less numerous sunflecks: average sunfleck length varied from 1.4 ± 1.7 min for Cyanea floribunda in shaded forest understories to 31.2 ± 2.1 min for Trematolobelia kauaiensis on open ridges. As expected, the rate of photosynthetic induction increased significantly toward shadier sites, with assimilation after 60 s rising from ca. 30% of fully induced rates in species from open environments to 60% in those from densely shaded habitats. Uninduced light use efficiency—actual photosynthesis versus that expected under steady-state conditions—increased from 10 to 70% across the same gradient. In silico transplants—modeling daily carbon gain using one species’ photosynthetic light response in its own and other species’ dynamic light regimes—demonstrated the potential adaptive nature of species differences: understory Cyanea pilosa in its light regimes outperformed gap-dwelling Clermontia parviflora, while Clermontia in its light regimes outperformed Cyanea. The apparent crossover in daily photosynthesis occurred at about the same photon flux density where dominance shifts from Cyanea to Clermontia in the field. Our results further support our hypothesis that the lobeliads have diversified physiologically across light environments in Hawaiian ecosystems and that those shifts appear to maximize the carbon gain of each species in its own environment. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
5.
Photosynthetic induction of in situ saplings of two Costa Rican rainforest tree species wre compared in relation to their light environment, using infrared gas analysis and hemispherical photography. The species studied were Dipteryx panamensis, a climax species found in bright microsites, and Cecropia obtusifolia, a pioneer species. In the morning, when leaves were most responsive, induction time necessary to reach 90% of the lightsaturated rate of photosynthesis was on average 16 min for Dipteryx and 10 min for Cecropia. However, induction times for both species increased in the afternoon resulting in shorter daily average induction times for Dipteryx than for Cecropia. Dipteryx also maintained higher levels of induction for a longer period under low light conditions than did Cecropia. The two species differed in the way they adjusted to light availability. Dipteryx saplings growing in shady sites had faster rates of induction than saplings growing in bright sites, with no difference in light-saturated photosynthetic rate. In contrast, Cecropia saplings growing in bright sites had higher light-saturated photosynthetic rates than saplings growing in shady sites, with no difference in rates of induction. Dipteryx appears to exploit temporal variation in light availability by refining the quickness of the induction response to the light environment, while Cecropia adjusts its scale of exploitation by realizing a higher lightsaturated photosynthetic rate in sites of higher light.  相似文献   
6.
6种热带雨林木本植物幼苗光合诱导的研究   总被引:7,自引:1,他引:7       下载免费PDF全文
 在晴天上午适宜条件下,测定了生长在模拟林下光环境中的6种热带雨林木本植物幼苗的光合特性和光合诱导特征。6种植物分别为先锋树种大穗野桐(Mallotus macrostachys),冠层树种绒毛番龙眼(Pometia tomentosa)、玉蕊(Barringtonia pendala)、望天树(Shorea chinensis)、滇南插柚紫(Linociera insignis)和林下灌木睫毛粗叶木(Lasianthus hookeri)。研究结果表明:暗处理3 h的叶片经连续饱和强光照射后,6种植物的净光合速率呈s形到双曲线形。6种植物达到90%最大净光合速率的时间为4.4~12.5 min,这与所报道的其它热带雨林中一些阴生植物的诱导速率相近。大穗野桐和睫毛粗叶木的诱导速率最快,达到50%和90%最大净光合速率的时间为其它4种冠层植物幼苗的1/2至1/3。诱导过程中,最大气孔导度对强光的响应明显滞后于净光合速率。充分诱导的叶片在黑暗中20 min后,6种植物的诱导状态都较高。其中,大穗野桐的诱导状态消失相对较快,这可能与其气孔导度和羧化能力的快速降低有关。玉蕊诱导状态的消失主要与生化限制有关,因为此时它的气孔导度仍维持相对较高的值。而睫毛粗叶木较高的气孔导度和羧化能力的维持导致了很高的诱导状态。林下植物这种对强光的快速反应和黑暗中高的维持状态对有效利用光斑具有重要的意义,这与其一生中在林下生长和更新的特点是一致的。  相似文献   
7.
The dynamics of the canopy light environment for two poplar species (Populus tremuloides Michx., and P. fremontii Wats.) were characterized with an array of photocells in fixed positions within the canopy or attached directly to leaves and using a data logger that recorded photon flux density (PFD) at frequencies from 1 to 20 Hz. The majority of sunflecks were short in duration (<1 s) with a similar short interval between sunflecks. Sunflecks contribute as much as 90% of the total daily PFD in the lower canopy. Leaf flutter may cause high frequency (3 to 5 Hz) variations of PFD in poplar canopies. The amount of light intercepted by a fluttering leaf at the top of the canopy decreased with increasing flutter, whereas a fluttering lower canopy leaf showed no such trend. When leaves fluttered at the top of the canopy the understory light environment showed an increased number of shorter sunflecks. Leaf flutter may increase mean PFD for understory leaves. It also creates a canopy light environment that is more dynamic temporally and more evenly distributed spatially. The potential benefits of these changes in light dynamics are discussed.  相似文献   
8.
Detailed measurements of diurnal variations in photosynthetic photon flux density (PPFD) were made at seven locations within the canopy of aMiscanthus sinensis grassland to evaluate the light conditions of microsites for heliophilic tree seedlings. Multiple regression analysis revealed that the short-term light fluctuation on a clear day was highly dependent on the wind speed and solar elevation angle, whereas on a cloudy day it was mainly determined by the PPFD incident from above the canopy. The relative PPFD at 40 cm aboveground varied from 0.065 to 0.252, depending on sky conditions and the sensor's position in relation to clumped patches ofM. sinensis. On a clear day, the proportion of PPFD readings above 100 μmol·m−2·s−1 contributed by sunflecks ranged between 25.4% and 82.0%. Computer simulation showed that the contribution of sunflecks to the daily carbon gain ofQuercus serrata seedlings may range from 11% to 65%. The mean relative PPFD measured under diffuse light conditions was linearly related to the daily total PPFD and the daily carbon gain by single leaves ofQ. serrata seedlings. This suggests that the relative PPFD under diffuse light conditions provides an appropriate measure of site-specific light availability within a grass canopy.  相似文献   
9.
Photosynthetic responses to variable light were compared for species from habitats differing in light availability and dynamics. Plants were grown under the same controlled conditions and were analysed for the kinetics of photosynthetic induction when photon flux density (PFD) was increased from 25 to 800 mol m-2s-1. Gas exchange techniques were used to analyse the two principal components of induction, opening of stomata and activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). On average, 90% of the final photosynthetic rate was attained after 7 min for obligate shade plants (two species), 18 min for fast-growing sun plants (seven species from productive habitats) and 32 min for slow-growing sun plants (nine species from unproductive habitats). The rapidity of response of the shade plants was explained by stomata remaining more open in the low-light period prior to induction. This was also observed in two species of deciduous trees, which therefore resembled shade plants rather than other fast-growing sun plants. The slow response of the slow-growing sun plants was the result of lower rates of both Rubisco activation and stomatal opening, the latter being more important for the final phase of induction. The lower rate of Rubisco activation was confirmed by direct, enzymatic measurements of representative plants. With increasing leaf age, the rate of stomatal opening appeared to decrease but the rate of Rubisco activation was largely conserved. Representative species were also compared with respect to the efficiency of using light-flecks relative to continuously high light. The shade plants and the slow-growing sun plants had a higher efficiency than the fast-growing sun plants. This could be related to the presence of a higher electron transport capacity relative to carboxylation capacity in the former group, which seems to be associated with their lower photosynthetic capacities. Representative species were also compared with respect to the ability to maintain the various induction components through periods of low light. Generally, the fast-growing sun plants were less able than the other two categories to maintain the rapidly reversible component. Thus, although the rate of induction appears to be related to the ecology of the plant, other aspects of photosynthetic dynamics, such as the efficiency of using lightflecks and the ability to maintain the rapidly reversible component, seem rather to be inversely related to the photosynthetic capacity.  相似文献   
10.
 We examined in the field the photosynthetic utilization of fluctuating light by six neotropical rainforest shrubs of the family Rubiaceae. They were growing in three different light environments: forest understory, small gaps, and clearings. Gas exchange techniques were used to analyse photosynthetic induction response, induction maintenance during low-light periods, and lightfleck (simulated sunfleck) use efficiency (LUE). Total daily photon flux density (PFD) reaching the plants during the wet season was 37 times higher in clearings than in the understory, with small gaps exhibiting intermediate values. Sunflecks were more frequent, but shorter and of lower intensity in the understory than in clearings. However, sunflecks contributed one-third of the daily PFD in the understory. Maximum rates of net photosynthesis, carboxylation capacity, electron transport, and maximum stomatal conductance were lower in understory species than in species growing in small gaps or clearings, while the reverse was true for the curvature factor of the light response of photosynthesis. No significant differences were found in the apparent quantum yield. The rise of net photosynthesis during induction after transfer from low to high light varied from a hyperbolic shape to a sigmoidal increase. Rates of photosynthetic induction exhibited a negative exponential relationship with stomatal conductance in the shade prior to the increase in PFD. Leaves of understory species showed the most rapid induction and remained induced longer once transferred to the shade than did leaves of medium- or high-light species. LUE decreased rapidly with increasing lightfleck duration and was affected by the induction state of the leaf. Fully induced leaves exhibited LUEs up to 300% for 1-s lightflecks, while LUE was below 100% for 1–80 s lightflecks in uninduced leaves. Both induced and uninduced leaves of understory species exhibited higher LUE than those of species growing in small gaps or clearings. However, most differences disappeared for lightflecks 10 s long or longer. Thus, understory species, which grew in a highly dynamic light environment, had better capacities for utilization of rapidly fluctuating light than species from habitats with higher light availability. Received: 4 January 1997 / Accepted: 28 April 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号