首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2017年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2008年   1篇
  1994年   1篇
  1993年   2篇
排序方式: 共有8条查询结果,搜索用时 140 毫秒
1
1.
The properties of one ATP-inhibited and one Ca2+-dependent K+ channel were investigated by the patch-clamp technique in the soma membrane of leech Retzius neurons in primary culture. Both channels rectify at negative potentials. The ATP-inhibited K+ channel with a mean conductance of 112 pS is reversibly blocked by ATP (K i = 100 m), TEA (K i =0.8 mm) and 10 mm Ba2+ and irreversibly blocked by 10 nm glibenclamide and 10 m tolbutamide. It is Ca2+ and voltage independent. Its open state probability (P o) decreases significantly when the pH at the cytoplasmic face of inside-out patches is altered from physiological to acid pH values. The Ca2+-dependent K+ channel with a mean conductance of 114 pS shows a bell-shaped Ca2+ dependence of P o with a maximum at pCa 7–8 at the cytoplasmic face of the membrane. The P o is voltage independent at the physiologically relevant V range. Ba2+ (10 mm) reduces the single channel amplitude by around 25% (ATP, TEA, glibenclamide, tolbutamide, and Ba2+ were applied to the cytoplasmic face of the membrane).We conclude that the ATP-dependent K+ channel may play a role in maintaining the membrane potential constant—independently from the energy state of the cell. The Ca2+-dependent K+ channel may play a role in generating the resting membrane potential of leech Retzius neurons as it shows maximum activity at the physiological intracellular Ca2+ concentration.This study was supported by the Deutsche Forschungsgemeinschaft (W.-R. Schlue) and by a fellowship of the Konrad-Adenauer-Stiftung (G. Frey). We thank Dr. Draeger (Hoechst AG) for the gift of glibenclamide. The data are part of a future Ph.D. thesis of G. Frey.  相似文献   
2.
A series of sulfonylurea derivatives containing a 2,6-disubstituted aryl moiety were designed, synthesized and evaluated for their herbicidal activities. Most of these compounds showed excellent inhibitory rates against both monocotyledonous and dicotyledonous weeds, especially 10a, 10h and 10i. They exhibited equivalent or superior herbicidal efficiency than commercial chlorsulfuron at the dosage of 15 g/ha and the preliminary SAR was summarized. In order to illuminate the molecular mechanism of several potent compounds, their apparent inhibition constant (Kiapp) of Arabidopsis thaliana acetohydroxyacid synthase (AHAS) were determined and the results confirmed that these compounds were all potent AHAS inhibitors. 10i have a Kiapp of 11.5 nM, which is about 4 times as potent as chlorsulfuron (52.4 nM).  相似文献   
3.
Elementary K+ currents were recorded at 19°C in inside-out patches from cultured neonatal rat cardiocytes to elucidate the block phenomenology in cardiac ATP-sensitive K+ channels when inhibitory drug molecules, such as the sulfonylurea glibenclamide, the phenylalkylamine verapamil or sulfonamide derivatives (HE 93 and sotalol), are interacting in an attempt to stress the hypothesis of multiple channel-associated drug targets.Similar to their adult relatives, neonatal cardiac K(ATP) channels are characterized by very individual open state kinetics, even in cytoplasmically well-controlled, cell-free conditions; at –7 mV, open(1) ranged from 0.7 to 4.9 msec in more than 200 patches and open(2) from 10 to 64 msec—an argument for a heterogeneous channel population. Nevertheless, a common response to drugs was observed. Glibenclamide and the other inhibitory molecules caused long-lasting interruptions of channel activity, after cytoplasmic application, as if drug occupancy trapped cardiac K(ATP) channels in a very stable, nonconducting configuration. The resultant NP 0 depression was strongest with glibenclamide (apparent IC50 13 nmol/liter) and much weaker with verapamil (apparent IC50 9 mol/liter), HE 93 (apparent IC50 29 mol/liter) and sotalol (apparent IC50 43 mol/ liter) and may have resulted from the occupancy of a single site with drug-specific affinity or of two sites, the high affinity glibenclamide target and a distinct nonglibenclamide, low affinity target.Changes in open state kinetics, particularly in the transition between the O1 state and the O2 state, are other manifestations of drug occupancy of the channel. Any inhibitory drug molecule reduced the likelihood of attaining the O2 state, consistent with a critical reduction of the forward rate constant governing the O1-O1 transition. But only HE 93 (10 mol/liter) associated (with an apparent association rate constant of 2.3 × 106 mol–1 sec–1) to shorten significantly open(2) to 60.6 ± 6% of the predrug value, not the expected result when the entrance in and the exit from the O2 state would be drug-unspecifically nfluenced. Sotalol found yet another and definitely distinctly located binding site to interfere with K+ permeation; both enantiomers associated with a rate close to 5×105 mol–1 sec–1 with the open pore thereby flicker-blocking cardiac K(ATP) channels. Clearly, these channels accommodate more than one drug-binding domain.  相似文献   
4.
Most bacteria possess the enzyme acetohydroxyacid synthase, which is used to produce branched-chain amino acids. Enteric bacteria contain several isozymes suited to different conditions, but the distribution of acetohydroxyacid synthase in soil bacteria is largely unknown. Growth experiments confirmed that Escherichia coli, Salmonella enterica serotype Typhimurium, and Enterobacter aerogenes contain isozymes of acetohydroxyacid synthase, allowing the bacteria to grow in the presence of valine (which causes feedback inhibition of AHAS I) or the sulfonylurea herbicide triasulfuron (which inhibits AHAS II) although a slight lag phase was observed in growth in the latter case. Several common soil isolates were inhibited by triasulfuron, but Pseudomonas fluorescens and Rhodococcus erythropolis were not inhibited by any combination of triasulfuron and valine. The extent of sulfonylurea-sensitive acetohydroxyacid synthase in soil was revealed when 21 out of 27 isolated bacteria in pure culture were inhibited by triasulfuron, the addition of isoleucine and/or valine reversing the effect in 19 cases. Primers were designed to target the genes encoding the large subunits (ilvB, ilvG and ilvI) of acetohydroxyacid synthase from available sequence data and a ∼355 bp fragment in Bacillus subtilis, Arthrobacter globiformis, E. coli and S. enterica was subsequently amplified. The primers were used to create a small clone library of sequences from an agricultural soil. Phylogenetic analysis revealed significant sequence variation, but all 19 amino acid sequences were most closely related to published large subunit acetohydroxyacid synthase amino acid sequences within several phyla including the Proteobacteria and Actinobacteria. The results suggested the majority of soil microorganisms contain only one functional acetohydroxyacid synthase enzyme sensitive to sulfonylurea herbicides.  相似文献   
5.
In the present study a library of twenty six benzenesulfonylureas containing thiophenylpyrazoline moiety has been synthesized. All the compounds were docked against PPAR-γ target. Most of the compounds displayed higher dock score than standard drugs, glibenclamide and rosiglitazone. All the synthesized compounds were primarily evaluated for their antidiabetic effect by oral glucose tolerance test. Further assessment of antidiabetic potential of sixteen active compounds was then done on STZ induced diabetic model. The results of in vivo activity by both the methods were found to be consistent with each other as well as with docking studies. Change in body weight of STZ induced animals post treatment was also assessed at the end of study. In vitro PPAR-γ transactivation assay was performed on active compounds in order to validate docking results and the most active compound 3k was also shown to elevate gene expression of PPAR-γ. Furthermore, the compounds were screened by National Cancer Institute, Bethesda for anticancer effect and two compounds 3h and 3i were selected at one dose level since they exhibited sensitivity towards tumor cell lines (mainly melanoma).  相似文献   
6.
Neuroendocrine-type KATP channels, (SUR1/Kir6.2)4, couple the transmembrane flux of K+, and thus membrane potential, with cellular metabolism in various cell types including insulin-secreting β-cells. Mutant channels with reduced activity are a cause of congenital hyperinsulinism, whereas hyperactive channels are a cause of neonatal diabetes. A current regulatory model proposes that ATP hydrolysis is required to switch SUR1 into post-hydrolytic conformations able to antagonize the inhibitory action of nucleotide binding at the Kir6.2 pore, thus coupling enzymatic and channel activities. Alterations in SUR1 ATPase activity are proposed to contribute to neonatal diabetes and type 2 diabetes risk. The regulatory model is partly based on the reduced ability of ATP analogs such as adenosine 5′-(β,γ-imino)triphosphate (AMP-PNP) and adenosine 5′-O-(thiotriphosphate) (ATPγS) to stimulate channel activity, presumably by reducing hydrolysis. This study uses a substitution at the catalytic glutamate, SUR1E1507Q, with a significantly increased affinity for ATP, to probe the action of these ATP analogs on conformational switching. ATPγS, a slowly hydrolyzable analog, switches SUR1 conformations, albeit with reduced affinity. Nonhydrolyzable AMP-PNP and adenosine 5′-(β,γ-methylenetriphosphate) (AMP-PCP) alone fail to switch SUR1, but do reverse ATP-induced switching. AMP-PCP displaces 8-azido-[32P]ATP from the noncanonical NBD1 of SUR1. This is consistent with structural data on an asymmetric bacterial ABC protein that shows that AMP-PNP binds selectively to the noncanonical NBD to prevent conformational switching. The results imply that MgAMP-PNP and MgAMP-PCP (AMP-PxP) fail to activate KATP channels because they do not support NBD dimerization and conformational switching, rather than by limiting enzymatic activity.  相似文献   
7.
K+ channels sensitive to intracellular ATP (KATP channels) have been described in a number of cell types and are selectively inhibited by sulfonylurea drugs. To look for the presence of this type of K+ channel in the basolateral membrane of tight epithelia, we have used an amphibian renal cell line, the A6 cells, grown on filters. After the selective permeabilization of the apical membrane with amphotericin B, the basolateral conductance was studied under voltage-clamp conditions. Tolbutamide inhibited 65.8 ± 6.3% of the barium-sensitive current. The tolbutamide-sensitive conductance had an equilibrium potential of ?83 ± 1 mV and was inward rectifying in spite of the outwardly directed K+ gradient. Similar results were obtained with glibenclamide. The half-inhibition constants were 25.7 ± 3.0 μm and 0.114 ± 0.018 μm for tolbutamide and glibenclamide respectively. To study the relation between cellular ATP and the activity of this conductance, A6 cells were treated with glucose (5 mm) and insulin (250 μU/ml). This maneuver significantly increased the cellular ATP and abolished the tolbutamide-sensitive conductance. A sulfonylurea-sensitive K+ conductance is present and active in the basolateral membrane of A6 cells. This conductance appears to be modulated by physiological changes of intracellular ATP.  相似文献   
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号