首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   0篇
  国内免费   2篇
  81篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   6篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   3篇
  2006年   9篇
  2005年   5篇
  2004年   9篇
  2003年   8篇
  2002年   5篇
  2001年   2篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1973年   1篇
排序方式: 共有81条查询结果,搜索用时 0 毫秒
1.
Parenchymal cells, isolated from untreated (control), phenobarbital(PB)-or 3-methylcholanthrene(3-MC)-treated rats, were separated into four subpopulations according to cell density, and glucuronidation and sulfation of p-nitrophenol (PNP) in the hepatocyte subpopulations were investigated. PB enhanced the glucuronidation almost 2-fold but not the sulfation, while 3-MC enhanced both glucuronidation (3-fold) and sulfation (2-fold) in the original cell suspensions. Some gradation trends were found in the conjugation activities among the hepatocyte subpopulations: In the control experiment, the extent of glucuronidation in four subpopulations was virtually the same but sulfation in high-density hepatocytes was slightly higher than in low-density ones. Both glucuronidation and sulfation were higher in low-density hepatocytes from PB-treated rats, though the gradation was very modest. Glucuronidation and sulfation tended to be slightly higher in middle-density hepatocytes in the 3-MC experiment. However, no definite correlation in conjugation activities vs. cell density, like those seen in cytochrome P-450s vs. cell density in the hepatocytes isolated from PB-treated rats, were found in the subpopulations from control or inducer-treated rats. Simultaneous studies on acetylation of p-aminobenzoic acid (PABA) revealed that the activities in the subpopulations were virtually the same and the inducers had little influence on the activity.  相似文献   
2.
Prediction of tyrosine sulfation sites in animal viruses   总被引:1,自引:0,他引:1  
Post-translational modification of proteins by tyrosine sulfation enhances the affinity of extracellular ligand-receptor interactions important in the immune response and other biological processes in animals. For example, sulfated tyrosines in polyomavirus and varicella-zoster virus may help modulate host cell recognition and facilitate viral attachment and entry. Using a Position-Specific-Scoring-Matrix with an accuracy of 96.43%, we analyzed the possibility of tyrosine sulfation in all 1517 animal viruses available in the Swiss-Prot database. From a total of 97,729 tyrosines, we predicted 5091 sulfated tyrosine sites from 1024 viruses. Our site predictions in hemagglutinin of influenza A, VP4 of rotavirus, and US28 of cytomegalovirus strongly suggest an important link between tyrosine sulfation and viral disease mechanisms. In each of these three viral proteins, we observed highly conserved amino acid sequences surrounding predicted sulfated tyrosine sites. Tyrosine sulfation appears to be much more common in animal viruses than is currently recognized.  相似文献   
3.
Sulfation of proteoglycans is an important post-translational modification in chondrocytes. We previously found that 3'-phosphoadenosine 5'-phosphosulfate (PAPS) synthetase-2 levels increased more than 10-fold during mesenchymal cell chondrogenesis. Given that PAPS is the sole sulfur donor, and is produced only by PAPS synthetase in all cells, increased expression of PAPS synthetase-2 should be a prerequisite for increased sulfation activity of chondrocytes. We found that sodium chlorate, a specific inhibitor of PAPS synthetase, inhibited proteoglycan sulfation during chondrogenesis. In contrast, sodium chlorate unexpectedly induced early expression of type II collagen and increased the number of cartilage nodules during chondrogenesis. Inhibition of sulfation also accelerated the down-regulation of N-cadherin and fibronectin during chondrogenesis. These findings suggest that sulfation has an important regulatory role in coordinating the timely expression of extracellular matrix molecules during chondrogenesis, and that under-sulfation may cause the breakdown of this coordination, leading to premature chondrogenesis.  相似文献   
4.
By searching the expressed sequence tag database, a zebrafish cDNA encoding a putative cytosolic sulfotransferase (SULT) was identified. Sequence analysis indicated that this zebrafish SULT belongs to the SULT1 cytosolic SULT gene family. The recombinant form of this novel zebrafish SULT, expressed using the pGEX-2TK expression system and purified from transformed BL21 (DE3) Escherichia coli cells, displayed sulfating activities specifically for estrone and 17beta-estradiol among various endogenous compounds tested as substrates. The enzyme also exhibited sulfating activities toward some xenobiotic phenolic compounds. This new zebrafish SULT showed dual pH optima, at 6.5 and 10-10.5, with estrone or n-propyl gallate as substrate. Kinetic constants of the sulfation of estrone, 17beta-estradiol, and n-propyl gallate were determined. Developmental stage-dependent expression experiments revealed a significant level of expression of this novel zebrafish estrogen-sulfating SULT at the beginning of the hatching period during embryogenesis, which continued throughout the larval stage onto maturity.  相似文献   
5.
Six water-insoluble fractions of fungal beta-glucans extracted by hot alkali (TM8-1 to TM8-6) from the sclerotia of Pleurotus tuber-regium (PTR) having different molecular weights (M(w)) were sulfated to give their corresponding water-soluble derivatives (S-TM8-1 to S-TM8-6) with the degree of sulfation (DS) ranging from 1.14 to 1.74. The in vitro anti-viral activities of the native beta-glucans (TM8s) and their sulfated derivatives (S-TM8s) were evaluated by the cytopathic effect assay (CPE) and the plaque reduction assay (PRA) against four kinds of viruses, including herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2 (HSV-2), respiratory syncytial virus (RSV), and influenza A virus (Flu A). Although TM8s were inactive in inhibiting the viral replication in cell cultures, the S-TM8 fractions with the defined M(w) range had potent anti-viral activity against HSV-1 and HSV-2 as shown by the CPE assay. The PRA results suggested that S-TM8 fractions seemed to exert their anti-viral effect by binding to the viral particles, preventing the latter from infecting the host cells. It was plausible that the negative charges on the polymer chain of S-TM8 could interact with the positively charged glycoproteins on the surface of HSV, minimizing the interaction between the HSV and the negatively charged host cells. The anti-viral activity of the S-TM8s might also be explained by their more extended chain conformation in solution due to an increase in one of their molecular parameter, persistence length (q), as compared to the native TM8s. The potential use of S-TM8s as a water-soluble anti-HSV agent is discussed.  相似文献   
6.
Wang Y  Zhang L  Li Y  Hou X  Zeng F 《Carbohydrate research》2004,339(15):2567-2574
A water-insoluble (1-->3)-beta-D-glucan isolated from fresh sclerotium of Poria cocos was, respectively, sulfated, carboxymethylated, methylated, hydroxyethylated, and hydroxypropylated, to afford five water-soluble derivatives. Their weight-average molecular masses (Mw) and intrinsic viscosities ([eta]) were determined by size-exclusion chromatography combined with laser light scattering (SEC-LLS), LLS, and viscometry in phosphate buffer solution (PBS) at 37 degrees C. The antitumor activities, against Sarcoma 180 tumor cell (S-180) and gastric carcinoma cell strain (MKN-45 and SGC-7901) of the native beta-glucan and the five derivatives, were tested in vitro and in vivo. The Mw values of the five derivatives in PBS were determined to be 3.8 x 10(4), 18.9 x 10(4), 16.0 x 10(4), 76.8 x 10(4), and 224.3 x 10(4), respectively. The high Mw values of the hydroxyethylated and hydroxypropylated derivatives in aqueous solution resulted from aggregation, and their true Mw values obtained in dimethyl sulfoxide were 20.1 x 10(4) and 19.1 x 10(4). The sulfated and carboxymethylated derivatives having DS of 1.0-1.3 show good water solubility, and exist as relatively expanded chains in aqueous solution. Interestingly, the native beta-glucan did not show antitumor activity, whereas the sulfated and carboxymethylated derivatives exhibit significant antitumor activities against S-180 and gastric carcinoma tumor cells. This work showed that good water solubility, relatively high chain stiffness, and moderate molecular mass of the derivatives in aqueous solution contribute beneficial to enhancement of antitumor activity.  相似文献   
7.
Human and animal hepatocytes are now being used as an in vitro technique to aid drug discovery by predicting the in vivo metabolic pathways of drugs or new chemical entities (NCEs), identifying drug-metabolizing enzymes and predicting their in vivo induction. Because of the difficulty of establishing whether the cytotoxic susceptibility of human hepatocytes to xenobiotics/drugs in vitro could be used to predict in vivo human hepatotoxicity, a comparison of the susceptibility of the hepatocytes of human and animal models to six chemical classes of drugs/xenobiotics in vitro have been related to their in vivo hepatotoxicity and the corresponding activity of their metabolizing enzymes. This study showed that the cytotoxic effectiveness of 16 halobenzenes towards rat hepatocytes in vitro using higher doses and short incubation times correlated well with rat hepatotoxic effectiveness in vivo with lower doses/longer times. The hepatic/hepatocyte xenobiotic metabolizing enzyme activities of various animal species and human have been reviewed for use by veterinarians and research scientists. Where possible, recommendations have been made regarding which animal hepatocyte model is most applicable for modeling the susceptibility to xenobiotic induced hepatotoxicity of those humans with slow versus rapid metabolizing enzyme polymorphisms. These recommendations are based on the best human fit for animal drug/xenobiotic metabolizing enzymes in terms of activity, kinetics and substrate/inhibitor specificity. The use of human hepatocytes from slow versus rapid metabolizing individuals for drug metabolism/cytotoxicity studies; and the research use of freshly isolated rat hepatocytes and "Accelerated Cytotoxicity Mechanism Screening" (ACMS) techniques for identifying drug/xenobiotic reactive metabolites are also described. Using these techniques the molecular hepatocytotoxic mechanisms found in vitro for seven classes of xenobiotics/drugs were found to be similar to the rat hepatotoxic mechanisms reported in vivo.  相似文献   
8.
Activated sulfate in the form of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) is needed for all sulfation reactions in eukaryotes with implications for the build-up of extracellular matrices, retroviral infection, protein modification, and steroid metabolism. In metazoans, PAPS is produced by bifunctional PAPS synthases (PAPSS). A major question in the field is why two human protein isoforms, PAPSS1 and -S2, are required that cannot complement for each other. We provide evidence that these two proteins differ markedly in their stability as observed by unfolding monitored by intrinsic tryptophan fluorescence as well as circular dichroism spectroscopy. At 37 °C, the half-life for unfolding of PAPSS2 is in the range of minutes, whereas PAPSS1 remains structurally intact. In the presence of their natural ligand, the nucleotide adenosine 5'-phosphosulfate (APS), PAPS synthase proteins are stabilized. Invertebrates only possess one PAPS synthase enzyme that we classified as PAPSS2-type by sequence-based machine learning techniques. To test this prediction, we cloned and expressed the PPS-1 protein from the roundworm Caenorhabditis elegans and also subjected this protein to thermal unfolding. With respect to thermal unfolding and the stabilization by APS, PPS-1 behaved like the unstable human PAPSS2 protein suggesting that the less stable protein is evolutionarily older. Finally, APS binding more than doubled the half-life for unfolding of PAPSS2 at physiological temperatures and effectively prevented its aggregation on a time scale of days. We propose that protein stability is a major contributing factor for PAPS availability that has not as yet been considered. Moreover, naturally occurring changes in APS concentrations may be sensed by changes in the conformation of PAPSS2.  相似文献   
9.
Combining advantageous sequences of Alchemia and Sanofi methods of synthesis of Fondaparinux, a more efficient and practical synthetic strategy for the synthesis of corresponding protected pentasaccharide was developed. The protected pentasaccharide was smoothly converted into Fondaparinux in overall high yield (1%).  相似文献   
10.
Synthesis of chitosan sulfates with low molecular weight (Mv 9000–35,000 Da) was carried out by sulfation of low molecular weight chitosan (Mv 10,000–50,000 Da). The oleum was used as sulfating agent and dimethylfornamide as medium. The chitosans were prepared by enzymatic and acidic hydrolysis of initial high molecular weight chitosan as well as by extrusion solid-state deacetylation of chitin. As was shown by FT-IR and NMR-methods and elemental analysis, the sulfation occurred at C-6 and C-3 positions and substitution degree is 1.10–1.63. The molecular weight sulfated chitosan was determined by viscometric method and the Mark–Houwink equation [η]=10−5 4.97 M0.77. Study of anticoagulant activity showed that chitosan sulfates with lowered molecular weight demonstrated a regular increase of anti-Xa activity like heparins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号