首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1334篇
  免费   22篇
  国内免费   16篇
  2023年   6篇
  2022年   6篇
  2021年   11篇
  2020年   12篇
  2019年   9篇
  2018年   13篇
  2017年   10篇
  2016年   13篇
  2015年   21篇
  2014年   31篇
  2013年   75篇
  2012年   29篇
  2011年   47篇
  2010年   33篇
  2009年   51篇
  2008年   73篇
  2007年   73篇
  2006年   56篇
  2005年   54篇
  2004年   47篇
  2003年   60篇
  2002年   43篇
  2001年   23篇
  2000年   34篇
  1999年   27篇
  1998年   33篇
  1997年   21篇
  1996年   23篇
  1995年   25篇
  1994年   27篇
  1993年   26篇
  1992年   21篇
  1991年   19篇
  1990年   27篇
  1989年   27篇
  1988年   26篇
  1987年   18篇
  1986年   26篇
  1985年   36篇
  1984年   30篇
  1983年   21篇
  1982年   34篇
  1981年   19篇
  1980年   16篇
  1979年   13篇
  1978年   4篇
  1977年   11篇
  1976年   3篇
  1974年   3篇
  1973年   4篇
排序方式: 共有1372条查询结果,搜索用时 31 毫秒
1.
[3H]Dihydroergocryptine ([3H]DHE) was shown to bind to sites in membranes from neuroblastoma X glioma hybrid cells (NG 108-15) that had the characteristics expected of alpha-adrenergic receptors. The binding was saturable with 0.3 pmol [3H]DHE bound per mg of protein and of high affinity, with an apparent dissociation constant (KD) of 1.8 nM. The specificity of the binding site for various ligands was more similar to that of alpha 2 receptors than to that of alpha 1. No specific binding of [3H]WB-4101 was found in the membranes derived from NG 108 cells. This finding also indicated that the [3H]DHE binding site in the cell is the alpha 2 receptor. GTP lowered the affinity of agonists for the [3H]DHE binding site, although the nucleotide hardly affected the affinity of antagonists including [3H]DHE.  相似文献   
2.
In the frog intestine, both in vitro and in vivo, experiments were carried out in order to increase knowledge of the mechanism of sugar exit across the basolateral membrane of the enterocyte. The frog intestine was chosen because it lacks crypt cells and, consequently, any external fluid circuit mechanism during sugar transport can be avoided. Therefore, the sugar concentration in the absorbate collected on the serosal side is likely to be similar to that present underneath the basolateral membrane of the enterocyte. Under this condition, cell and absorbate sugar concentrations are similar; yet there is a concomitant net transintestinal sugar transport. Moreover, in in vivo experiments a net transintestinal sugar transport takes place even against a concentration difference. These results suggest that sugar exit across the basolateral membrane is not simply due to a chemically facilitated diffusion.  相似文献   
3.
Protoplasts isolated from beetroot tissue took up glucose preferentially whereas sucrose was transported more slowly. The 14C-label from [14C]glucose and [14C]sucrose taken up by the cells could be detected rapidly in phosphate esters and, after feeding of [14C]glucose was found also in sucrose. The temperature-dependent uptake process (activation energy EA about 50 kJ · mol–1) seems to be carrier mediated as indicated by its substrate saturation and, for glucose, by competition experiments which revealed positions C1, C5 and C6 of the D-glucose molecule as important for effective uptake. The apparent Km(20° C) for glucose (3-O-methylglucose) was about 1 mM whereas for sucrose a significantly lower apparent affinity was determined (Km about 10 mM). When higher concentrations of glucose (5 mM) or sucrose (20 mM) were administered, the uptake process followed first-order kinetics. Carrier-mediated transport was inhibited by N,N-dicyclohexylcarbodiimide, Na-orthovanadate, p–chloromercuribenzenesulfonic acid, and by uncouplers and ionophores. The uptake system exhibited a distinct pH optimum at pH 5.0. The results indicate that generation of a proton gradient is a prerequisite for sugar uptake across the plasma membrane. Protoplasts from the bundle regions in the hypocotyl take up glucose at higher rates than those derived from bundle-free regions. The results favour the idea that apoplastic transport of assimilates en route of unloading might be restricted to distinct areas within the storage organ (i.e. the bundle region) whereas distribution in the storage parenchyma is symplastic.Abbreviations CCCP Carbonylcyanide m–chlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - DOG deoxyglucose - Mes 2-(N-morpholino)ethanesulfonic acid - 3-OMG 3-O-methylglucose - PCMBS p–chloromercuribenzenesulfonic acid - SDS Sodium dodecyl sulfate - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   
4.
The effect of a low phosphate concentration on intracellular adenine nucleotide content, oxygen consumption and poly--hydroxybutyrate deposition was investigated with N-free and NH 4 + batch cultures of Azotobacter vinelandii. When the microorganisms were cultured under low-phosphate concentrations the cells contained much larger amounts of poly--hydroxybutyrate, but displayed lower oxygen consumption activities and energy charge values than did control cells. Also, the ratio ATP to ADP was much higher in control cells and the intracellular levels of ATP were lower in low-phosphate cells.  相似文献   
5.
This study was undertaken in order to demonstrate the extent to which the activity of the plasmalemma H+-ATPase compensates for the charge and acidity flow caused by the sugar-proton symport in cells of chlorella vulgaris Beij.. Detailed analysis of H+ and K+ fluxes from and into the medium together with measurements of respiration, cytoplasmic pH, and cellular ATP-levels indicate three consecutive phases after the onset of H+ symport. Phase 1 occurred immediately after addition of sugar, with an uptake of H+ by the hexoseproton symport and charge compensation by K+ loss from the cells and, to a smaller degree, by loss of another ion, probably a divalent cation. This phase coincided with strong membrane depolarization. Phase 2 started approximately 5 s after addition of sugar, when the acceleration of the H+-ATPase caused a slow-down of the K+ efflux, a decrease in the cellular ATP level and an increase in respiration. The increased respiration was most probably responsible for a pronounced net acidification of the medium. This phase was inhibited in deuterium oxide. In phase 3, finally, a slow rate of net H+ uptake and K+ loss was established for several further minutes, together with a slight depolarization of the membrane. There was hardly any pH change in the cytoplasm, because the cytoplasmic buffering capacity was high enough to stabilize the pH for several minutes despite the net H+ fluxes. The quantitative participation of the several phases of H+ and K+ flow depended on the pH of the medium, the ambient Ca2+ concentration, and the metabolic fate of the transported sugar. The results indicate that the activity of the H+-ATPase never fully compensated for H+ uptake by the sugar-symport system, because at least 10% of symport-caused charge inflow was compensated for by K+ efflux. The restoration of pH in the cytoplasm and in the medium was probably achieved by metabolic reactions connected to increased glycolysis and respiration.Abbreviations DMO dimethyloxazolidinedione - EDTA ethylcnediaminetetraacetic acid - p.c. packed cell volume  相似文献   
6.
The concentration requirements of calmodulin in altering basal, GTP-, and dopamine-stimulated adenylate cyclase activities in an EGTA-washed particulate fraction from bovine striatum were examined. In the bovine striatal particulate fraction, calmodulin activated basal adenylate cyclase activity 3.5-fold, with an EC50 of 110 nM. Calmodulin also potentiated the activation of adenylate cyclase by GTP by decreasing the EC50 for GTP from 303 +/- 56 nM to 60 +/- 10 nM. Calmodulin did not alter the maximal response to GTP. The EC50 for calmodulin in potentiating the GTP response was only 11 nM as compared to 110 nM for activation of basal activity. Similarly, calmodulin increased the maximal stimulation of adenylate cyclase by dopamine by 50-60%. The EC50 for calmodulin in eliciting this response was 35 nM. These data demonstrate that calmodulin can both activate basal adenylate cyclase and potentiate adenylate cyclase activities that involve the activating GTP-binding protein, Ns. Mechanisms that involve potentiation of Ns-mediated effects are much more sensitive to calmodulin than is the activation of basal adenylate cyclase activity. Potentiation of GTP-stimulated adenylate cyclase activity by calmodulin was apparent at 3 and 5 mM MgCl2, but not at 1 or 10 mM MgCl2. These data further support a role for calmodulin in hormonal signalling and suggest that calmodulin can regulate cyclic AMP formation by more than one mechanism.  相似文献   
7.
The role of the hypothalamic tripeptide L-prolyl-L-leucyl-glycinamide (PLG) in modulating the agonist binding to bovine striatal dopamine D2 receptor was investigated using a selective high-affinity agonist, n-propylnorapomorphine (NPA). PLG caused an enhancement in [3H]NPA binding in striatal membranes in a dose-dependent manner, the maximum effect being observed at 10(-7)-10(-6) M concentration of the tripeptide. The Scatchard analysis of [3H]NPA binding to membranes preincubated with 10(-6) M PLG revealed a significant increase in the affinity of the agonist binding sites. In contrast, there was no effect of PLG on the binding pattern of the antagonist [3H]spiroperidol. The antagonist versus agonist competition curves analyzed for agonist high- and low-affinity states of the receptor displayed an increase in the population and affinity of the high-affinity form of the receptor with PLG treatment. The low-affinity sites concomitantly decreased with relatively small change in the affinity for the agonists. Almost similar results were obtained when either NPA or apomorphine was used in the competition experiments. A partial antagonistic effect of PLG on 5'-guanylylimidodiphosphate [Gpp(NH)p]-induced inhibition of high-affinity agonist binding was also observed, as the ratio of high- to low-affinity forms of the receptor was significantly higher in the PLG-treated membranes compared to the controls. Direct [3H]NPA binding experiments demonstrated that PLG attenuated the Gpp(NH)p-induced inhibition of agonist binding by increasing the EC50 of the nucleotide (concentration that inhibits 50% of the specific binding). No effect of PLG on high-affinity [3H]NPA binding, however, could be observed when the striatal membranes were preincubated with Gpp(NH)p.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
8.
Summary The complete physical map of the mitochondrial genome of the Owen cytoplasm of sugar beet has been determined from overlapping cosmid clones. The genome is 386 kb in size and has a multicircular organisation generated by homologous recombination across repeated DNA elements. The location of the rRNA genes and several polypeptide genes has been determined. In addition the mitochondrial genome was found to contain a sequence of chloroplast DNA including part of the 16 S rRNA gene.  相似文献   
9.
Redox interconversion of glutathione reductase was studiedin situ withS. cerevisiae. The enzyme was more sensitive to redox inactivation in 24 hour-starved cells than in freshly-grown ones. While 5 μM NADPH or 100 μM NADH caused 50% inactivation in normal cells in 30 min, 0.75 μM NADPH or 50 μM NADH promoted a similar effect in starved cells. GSSG reactivated the enzyme previously inactivated by NADPH, ascertaining that the enzyme was subjected to redox interconversion. Low EDTA concentrations fully protected the enzyme from NADPH inactivation, thus confirming the participation of metals in such a process. Extensive inactivation was obtained in permeabilized cells incubated with glucose-6-phosphate or 6-phosphogluconate, in agreement with the very high specific activities of the corresponding dehydrogenases. Some inactivation was also observed with malate, L-lactate, gluconate or isocitrate in the presence of low NADP+ concentrations. The inactivation of yeast glutathione reductase has also been studiedin vivo. The activity decreased to 75% after 2 hours of growth with glucono-δ-lactone as carbon source, while NADPH rose to 144% and NADP+ fell to 86% of their initial values. Greater changes were observed in the presence of 1.5 μM rotenone: enzymatic activity descended to 23% of the control value, while the NADH/NAD+ and NADPH/NADP+ ratios rose to 171% and 262% of their initial values, respectively. Such results indicate that the lowered redox potential of the pyridine nucleotide pool existing when glucono-δ-lactone is oxidized promotesin vivo inactivation of glutathione reductase.  相似文献   
10.
Four different nucleotide-gated ion channels are discussed in terms of their biophysical properties and their importance in cell physiology. Channels activated directly by cGMP are present in vertebrate and invertebrate photoreceptors. In both cases cGMP increases the fraction of time the channel remains in the open state. At least three cGMP molecules are involved in channel opening in vertebrate photoreceptors and the concentration of the cyclic nucleotide to obtain the half maximal effect is about 15 µM. The light-dependent channel of both vertebrates and invertebrates is poorly cation selective. The vertebrate channel allows divalent cations to pass through 10–15-fold more easily than monovalent ions. In agreement with their preference for divalent cations, this channel is blocked byl-cis Dialtazem, a molecule that blocks certain types of calcium channels. In olfactory neurons a channel activated by both cAMP and cGMP is found and, as in the light-dependent channel, several molecules of the nucleotide are needed to open the channel with a half maximal effect obtained in the range of 1–40 µM. The channel is poorly cationic selective. A K+ channel directly and specifically activated by cAMP is found inDrosophila larval muscle. At least three cAMP molecules are involved in the opening reaction. Half-maximal effect is obtained at about 50 µM. This channel is blocked by micromolar amount of tetraethylammonium applied internally. Interestingly, this channel has a probability of opening 10–20-fold larger in the mutantdunce, a mutant that possesses abnormally elevated intracellular cAMP level, than in the wild type.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号