首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2020年   1篇
  2012年   1篇
  2008年   1篇
  2006年   1篇
  2002年   1篇
  1998年   1篇
  1994年   1篇
  1985年   1篇
  1981年   1篇
  1976年   2篇
  1973年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
Summary Hexaploid triticales were crossed with common wheats, and the resultant froms were selected for either triticale (AD 213/5-80) or common wheat (lines 381/80, 391/80, 393/80). The cytogenetic analysis showed that all forms differ in their chromosome composition. Triticale AD 213/5-80 and wheat line 381/80 were stable forms with 2n = 6x = 42. Lines 391/80 and 393/80 were cytologically unstable. In triticale AD 213/5-80, a 2R (2D) chromosome substitution was found. Each of the three wheat lines had a chromosome formed by the translocation of the short arm of IR into the long arm of the IB chromosome. In line 381/80, this chromosome seems to be inherited from the Kavkaz wheat variety. In lines 391/80 and 393/80, this chromosome apparently formed de novo since the parent forms did not have it. The karyotype of line 381/80 was found to contain rye chromosomes 4R/7R, 5R and 7R/4R. About 15% of the cells in line 391/80 contained an isochromosome for the 5R short arm and also a chromosome which arose from the translocation of the long arms of the 5D and 5R chromosomes. About one-third of the cells in the common wheat line 393/80 contained the 5R chromosome. This chromosome was normal or rearranged. Practical applications of the C-banding technique in the breeding of triticale is discussed.  相似文献   
2.
A higher ratio of substitutional to synonymous changes in between-species than in within-species comparisons has been taken as evidence for positive selection changing amino acids. A model is presented in which a difference of this kind arises as a result of purely neutral mutations, provided that the species compared are sufficiently different to approach a steady state between forward and backward mutation. In Neissseria, substitutions are twice as frequent, relative to synonymous changes, in between-species comparisons: it is shown that the data are consistent with the neutral model. The argument does not invalidate evidence for positive selection, for example in Drosophila, when the species compared are fairly similar.  相似文献   
3.
Summary On account, notably, of a competition between different component functions for individual sites in polypeptide chains, each protein molecule represents a functional compromise, with some functions optimized, but the overall state of the molecule –suboptimal–. The proposal is made that the selection coefficient relating to a protein molecule under given conditions can in principle be broken down into partial selection coefficients relevant to the different functions that the molecule carries out. At generalfunction sites, each fixation improves some function, while others deteriorate, at first nonsignificantly, and the overall adaptive state of the molecule fluctuates around its maximum. A selective mechanism is described whereby kaleidoscopic changes in primary structure at variable sites are indefinitely promoted, independently of any environmental changes and with the molecule remaining close to a state of maximal overall adaptation. The paradoxical aspect of this proposal is analyzed. The implication of specific functions in substitutions at general-function sites is noted. Further, it is shown that a certain category of changes in the internal environment of the organism can be integrated into the constantenvironment model for selection. Genetic sufficiency is considered a notion more adequate than genetic optimality for describing biological fitness and for providing a basis for the present model. On this basis selection occurs without genetic load. Multipolymorphism is one of the consequences. Several lines of evidence, in particular observations on polymorphism in deep sea organisms, seem to support the model. It is pointed out that it provides a theoretical foundation for a molecular evolutionary clock. The theoretical constancy of the clock depends on the constancy of functional density. The question of the evolution of functional density is examined. Comparisons of observed substitution frequencies with values expected on a random basis are rejected as a measure of the contribution to evolution of nondetermination. They are considered to reflect a hierarchy in the resistance of the molecules to different amino acid residues as substituents. A limited component of –true– randomness, again accompanied by selection, is on the other hand provided by the model. Most amino acid substitutions are considered evolutionary noise, even though noise compatible with selection. It is proposed that evolutionarily significant substitutions may be identified by monitoring changes in functional density and weighted functional density.Directeur de Recherche at Centre National de la Recherche Scientifique, Paris.  相似文献   
4.
Monomorphic loci evolve through a series of substitutions on a fitness landscape. Understanding how mutation, selection, and genetic drift drive this process, and uncovering the structure of the fitness landscape from genomic data are two major goals of evolutionary theory. Population genetics models of the substitution process have traditionally focused on the weak-selection regime, which is accurately described by diffusion theory. Predictions in this regime can be considered universal in the sense that many population models exhibit equivalent behavior in the diffusion limit. However, a growing number of experimental studies suggest that strong selection plays a key role in some systems, and thus there is a need to understand universal properties of models without a priori assumptions about selection strength. Here we study time reversibility in a general substitution model of a monomorphic haploid population. We show that for any time-reversible population model, such as the Moran process, substitution rates obey an exact scaling law. For several other irreversible models, such as the simple Wright-Fisher process and its extensions, the scaling law is accurate up to selection strengths that are well outside the diffusion regime. Time reversibility gives rise to a power-law expression for the steady-state distribution of populations on an arbitrary fitness landscape. The steady-state behavior is dominated by weak selection and is thus adequately described by the diffusion approximation, which guarantees universality of the steady-state formula and its applicability to the problem of reconstructing fitness landscapes from DNA or protein sequence data.  相似文献   
5.
Previous studies have estimated that, in angiosperms, the synonymous substitution rate of chloroplast genes is three times higher than that of mitochondrial genes and that of nuclear genes is twelve times higher than that of mitochondrial genes. Here we used 12 genes in 27 seed plant species to investigate whether these relative rates of substitutions are common to diverse seed plant groups. We find that the overall relative rate of synonymous substitutions of mitochondrial, chloroplast and nuclear genes of all seed plants is 1:3:10, that these ratios are 1:2:4 in gymnosperms but 1:3:16 in angiosperms and that they go up to 1:3:20 in basal angiosperms. Our results show that the mitochondrial, chloroplast and nuclear genomes of seed plant groups have different synonymous substitutions rates, that these rates are different in different seed plant groups and that gymnosperms have smaller ratios than angiosperms.  相似文献   
6.
7.
Summary The distribution among the three nucleotide positions of the codons of 642 mutations fixed during the descent of 49 sequences of cytochromec was examined. This was compared to the distribution expected if the number of ways of getting a selectively acceptable amino acid alternative from a single nucleotide replacement at each coding position were random,i.e. proportional to the total number of ways of changing the encoded amino acid by a single nucleotide replacement at each coding position. It was found that the observed distribution was significantly different from random, there being 40% more mutations in the first coding position than in the second whereas one would have expected 10% more in the second than in the first. The probability of the result occurring by chance is < 10–6.The same test was made on the distribution of 347 mutations fixed in the descent of 19 sequences of alpha hemoglobin and 286 mutations fixed in the descent of 16 beta and 4 delta hemoglobins. The result for the alpha hemoglobins was a similar non-randomness but the probability of its occurring by chance rose to 0.005. The result for the beta-delta hemoglobins was in the same direction but was not significant (p = 0.3). The degree of non-randomness among the three genes in the distribution of fixations over the three nucleotide positions of their codons appears to be correlated (negatively) with their rates of evolution, the plasticity required of the molecule to adapt to new environments, and the recency of exploitation of opportunities for change in functional specificity provided by such processes as gene duplication.  相似文献   
8.
Summary A nucleic acid chain L nucleotides in length, with the specific base sequence B1B2.BL, each Bi being A, G, C, or T, is defined by the L-dimensional vector B = (B1, B2, , BL), the kth position in the chain being occupied by the base Bk. Let PBB' be the twelve given constant non-negative transition probabilities that in a specified position the base B is replaced by the base B in a single step, and let P BB' (XX) be the probability that the position goes from base B to B in X steps. An exact analytical expression for P BB' (XX) is derived. Assuming that each base mutates independently of the others, an exact expression is derived for the probability P BB' (XX) that the initial gene sequence B goes to a sequence B = (B1, B2, , BL) after X = (X1, X2, , XL) base replacements, where Xk is the number of single-step base replacements in the kth position. The resulting equations allow a more precise accounting for the effects of Darwinian natural selection in molecular evolution than does the idealized but biologically less accurate assumption that each of the four nucleotides is equally likely to mutate to and be fixed as one of the other three. Illustrative applications of the theory to some problems in biological evolution are given.  相似文献   
9.
To examine the substitution characteristics during official matches and the physical match performances of Japanese top-level futsal players in different categories and playing positions. Overall, 79 adult (age: 28.4 ± 4.6 years) and 59 youth (age: 17.1 ± 0.7 years) futsal players were classified into three groups based on the playing position (Pivot, Winger, and Defender). Physical match performance was assessed using active profiles from the semi-automatic tracking system. Speed and total distance covered were analysed for the in-play time. The in-play time was categorized based on the teams’ ball possession status. The average total playing time per substitution was significantly higher in the youth (6.2 ± 2.1 min) than in the adult players (3.8 ± 1.1 min; p < 0.05). Furthermore, the proportion of high intensity exercise during matches was significantly higher in adults (43.2 ± 5.2%) than in youth players (37.2 ± 5.4%; p < 0.05). There was no significant difference in the average total distance covered between different playing positions. However, the average total distance covered with ball possession by Pivot (140 ± 15 m/min) was significantly lower than that by Winger (151 ± 15 m/min; p < 0.05) in adult players. Furthermore, the proportion of high intensity exercise without ball possession as Defender (36.7 ± 6.1%) was lower than that as Winger (41.9 ± 6.1%; p < 0.05) in adults but not in the youth players. Adult futsal players have higher physiological demands than youth players. The physical match performances vary between playing positions with or without ball possession. These results could be useful for youth development and position-specific training information.  相似文献   
10.
We identified 411 processed sequences in the Arabidopsis thaliana genome based on the fact that they have lost their intron(s) and have a length that is at least 95% of the length of the gene that gave rise to them. These sequences were generated by 230 different genes and clearly originated from retrotranspositons events because most of them (91%) have a poly(A)-tail. They are composed of 376 sequences with frame shifts and/or premature stop codons (processed pseudogenes) and 35 sequences without disablements (processed genes). Eleven of these processed genes are likely functional retrotransposed genes because they have low Ka/Ks ratios and high Ks values, and their sequences match numerous Arabidopsis ESTs. Processed sequences are mostly randomly distributed in the Arabidopsis genome and their rate of accumulation has steadily been decreasing since it peaked some 50 MYA. In contrast with the situation observed in mammals, the processed sequences found in the Arabidopsis genome originate from genes with high copy numbers and not from highly expressed genes. The patterns of spontaneous mutations in Arabidopsis are slightly different than those of mammals but are similar to those observed in Drosophila. This suggests that methylated cytosine deamination is less frequent in Arabidopsis than in mammals. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Juergen Brosius]  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号