首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   1篇
  2014年   2篇
  2013年   1篇
  2008年   2篇
  2004年   1篇
  2003年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
[3H]Strychnine binding to rat pons + medulla membranes was used as a measure of glycine receptors or glycine receptor-coupled chloride channels in vitro. A series of compounds structurally related to 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), which previously were shown to antagonize glycine responses in cat spinal cord, inhibited [3H]strychnine binding in micromolar concentrations. The most potent of these glycine antagonists, 5,6,7,8-tetrahydro-4H-isoxazolo[3,4-d]azepin-3-ol (iso-THAZ), was also the most potent inhibitor of [3H]strychnine binding, with a Ki of 1,400 nM. The Ki value for strychnine was 7.0 nM, whereas the Ki value for the mixed gamma-aminobutyric acid (GABA)/glycine antagonist 3 alpha-hydroxy-16-imino-5 beta-17-aza-androstan-11-one (RU 5135) was only 4.6 nM. Sodium chloride (1,000 mM) enhanced the affinity of strychnine, brucine, isostrychnine, and the nonselective GABA antagonist pitrazepin for [3H]strychnine binding sites, whereas the affinities of glycine, beta-alanine, and taurine were reduced. These sodium chloride shifts, however, were not predictive of antagonist or agonist properties, since the sodium chloride shift for the glycine antagonist iso-THAZ and of the other THIP-related antagonists were similar to those of the glycine-like agonists. The various sodium chloride shifts show that different groups of ligands bind to glycine receptor sites in different ways.  相似文献   
2.
Summary The present study has been carried out to determine if glycine, an allosteric modulator of NMDA receptor, is involved in the vascular effect induced by the activation of the CNS NMDA receptors.Icv NMDA (from 0.01 to 1µg/rat in the 3rd ventricle) caused a significant increase in arterial blood pressure in conscious freely moving rats. Moreover, the hypertension was associated with behavioural modifications (jumping, rearing, teething and running). Glycine pretreatment (1 and 10µg/raticv), significantly increased the NMDA hypertension. Glycine alone did not cause any arterial blood pressure modification while it induced a slight sedation. HA-966 (an antagonist of the glycine site on NMDA receptor) administration (1–10µg/raticv 5 min before glycine) significantly antagonized the glycine effects on NMDA hypertension.Alone HA-966 neither modified arterial blood pressure nor antagonized NMDA hypertension. In conclusion, our investigations confirm NMDA receptor involvement in cardiovascular function and they demonstrate thatin vivo glycine positively modulates NMDA receptors.  相似文献   
3.
Abstract: [3H]Strychnine specifically binds to membrane fractions isolated from rat retinae. The binding is saturable, with an apparent dissociation constant, K D, of 14.3 × 10−9 M and 205 fmol bound/mg protein. Specific binding is time-dependent and proportional to protein concentration. Glycine and taurine are equally potent inhibitors of [3H]strychnine binding ( K i= 4 × 10−5 M); no other amino acids endogenously present in the retina inhibited [3H]strychnine binding.  相似文献   
4.
1H Nuclear magnetic resonance spectrometry and multivariate analysis techniques were applied for the metabolic profiling of three Strychnos species: Strychnos nux-vomica (seeds, stem bark, root bark), Strychnos ignatii (seeds), and Strychnos icaja (leaves, stem bark, root bark, collar bark). The principal component analysis (PCA) of the 1H NMR spectra showed a clear discrimination between all samples, using the three first components. The key compounds responsible for the discrimination were brucine, loganin, fatty acids, and Strychnos icaja alkaloids such as icajine and sungucine. The method was then applied to the classification of several "false angostura" samples. These samples were, as expected, identified as S. nux-vomica by PCA, but could not be clearly discriminated as root bark or stem bark samples after further statistical analysis.  相似文献   
5.
Cymbopogon winterianus (Poaceae) is used for its analgesic, anxiolytic and anticonvulsant properties in Brazilian folk medicine. This report aimed to perform phythochemical screening and to investigate the possible anticonvulsant effects of the essential oil (EO) from fresh leaves of C. winterianus in different models of epilepsy. The phytochemical analysis of EO showed presence of geraniol (40.06%), citronellal (27.44%) and citronellol (10.45%) as the main compounds. A behavioral screening demonstrated that EO (100, 200 and 400 mg/kg; ip) caused depressant activity on CNS. When administered concurrently, EO (200 and 400 mg/kg, ip) significantly reduced the number of animals that exhibited PTZ- and PIC-induced seizures in 50% of the experimental animals (p<0.05). Additionally, EO (100, 200 and 400 mg/kg, ip) significantly increased (p<0.05) the latencies of clonic seizures induced by STR. Our results demonstrated a possible activity anticonvulsant of the EO.  相似文献   
6.
1.  Inhibitory postsynaptic potentials (ipsps) produced by two classes of interneurons, CC (contralateral and caudal projecting) and lateral interneurons, were tested for strychnine sensitivity using paired intracellular recordings in the lamprey spinal cord. The ipsps were partially blocked by 0.2–0.5 M strychnine and were completely blocked by 5 M strychnine. Thus, the ipsps may be glycinergic.
2.  These interneurons are key participants in a proposed circuit model for fictive swimming. A connectionisttype computer simulation of the model demonstrated that the cycle period of the network increased with decreasing ipsp strength.
3.  Application of strychnine (0.1–0.5 M) to the spinal cord during fictive swimming induced by an excitatory amino acid increased cycle period, consistent with previous reports, but at odds with stimulation predictions.
4.  Strychnine also produced slow rhythmic modulation of fictive swimming (period = 12 s) which maintained left-right alternation and rostral-caudal coordination. Auto- and cross-correlation analyses revealed that the slow modulation was present in a weaker form in most control preparations during fictive swimming.
5.  Since the proposed model for the swimming pattern generator in the lamprey spinal cord does not predict the observed speeding with strychnine, nor the slow modulatory rhythm, it appears to be deficient in its present formulation.
  相似文献   
7.
士的宁杀灭高原鼢鼠的试验研究   总被引:2,自引:0,他引:2  
士的宁(strychnine)是从番木鳖(Shrychox nuxvomica)种子提得的一种生物碱。作为兴奋剂用于医疗方面和作为生化试剂使用,但作为杀鼠剂用来防治害鼠,国内尚未见有报道。在国外,士的宁被用于防治危害森林草地、作物地内的地下鼠和其它有害哺乳动物(Marsh,1978;Barnes,1980;Crouch,1980;Anthony,1984)。作者于1983-1984年期间针对草原主要害鼠之一--高原鼢鼠(Myospalax baileyi)进行了灭杀试验研究。  相似文献   
8.
Nine strychnine derivatives including neostrychnine, strychnidine, isostrychnine, 21,22‐dihydro‐21‐hydroxy‐22‐oxo‐strychnine, and several hydrogenated analogs were synthesized, and their antagonistic activities at human α1 and α1β glycine receptors were evaluated. Isostrychnine has shown the best pharmacological profile exhibiting an IC50 value of 1.6 μM at α1 glycine receptors and 3.7‐fold preference towards the α1 subtype. SAR Analysis indicates that the lactam moiety and the C(21)?C(22) bond in strychnine are essential structural features for its high antagonistic potency at glycine receptors  相似文献   
9.
Glycine is the principal inhibitory neurotransmitter in posterior regions of the brain. In addition, glycine serves as an allosteric regulator of excitatory neurotransmission mediated by the N-methyl-D-aspartate (NMDA) acidic amino acid receptor subtype. The studies presented here characterize [3H]glycine binding to washed membranes prepared from rat spinal cord and cortex, areas enriched in glycine inhibitory and NMDA receptors, respectively, in an attempt to define the glycine recognition sites on the two classes of receptors. Specific binding for [3H]glycine was seen in both cortex and spinal cord. Saturation analyses in cortex were best fitted by a two-site model with respective equilibrium dissociation constants (KD values) of 0.24 and 5.6 microM and respective maximal binding constants (Bmax values) of 3.4 and 26.7 pmol/mg of protein. Similar analyses in spinal cord were best fitted by a one-site model with a KD of 5.8 microM and Bmax of 20.2 pmol/mg of protein. Na+ had no effect on [3H]glycine binding to cortical membranes but increased the binding to spinal cord membranes by greater than 15-fold. This Na+-dependent binding may reflect glycine binding to the recognition site of the high-affinity, Na+-dependent glycine uptake system. Several short-chain, neutral amino acids displaced [3H]glycine binding from both cortical and spinal cord membranes. The most potent displacers of [3H]glycine binding to cortical membranes were D-serine and D-alanine, followed by the L-isomers of serine and alanine and beta-alanine. In contrast, D-serine and D-alanine were similar in potency to L-serine in spinal cord membranes. Compounds active at receptors for the acidic amino acids had disparate effects on the binding of [3H]glycine. At 10 microM, NMDA resulted in a 25% increase, whereas D- and L-2-amino-5-phosphonovaleric acid at 100 microM resulted in a 30% decrease, in [3H]glycine binding to cortical membranes. Kynurenic acid was the most potent of the acidic amino acid-related compounds at displacing [3H]glycine binding. In cortical membranes, kynurenic acid displacement was resolved into a high- and a low-affinity component; the high-affinity component displaced the high-affinity component of [3H]glycine binding.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
10.
Abstract: Specific [3H]strychnine binding was used to identify the glycine receptor macromolecular complex in human spinal cord, substantia nigra, inferior olivary nucleus, and cerebral cortex. In material from control patients a high-affinity K d (3–8 n m ) was observed in the spinal cord and the substantia nigra, both the pars compacta and the pars reticulata. This is very similar to the values observed in the rat and bovine spinal cord (8 and 3 n m , respectively) and rat substantia nigra (12 n m ). In the human brain the distribution of [3H]strychnine binding (at 10 n m ) was: spinal cord – substantia nigra, pars compacta > substantia nigra, pars reticulata = inferior olivary nucleus > cerebral cortex. The binding capacity ( B max) of the rat brain (substantia nigra or spinal cord) was approximately 10-fold that of the human brain. [ 3 H]Strychnine binding was significantly decreased in the substantia nigra from Parkinson's disease patients, both in the pars compacta (67% of control) and the pars reticulata (50% of control), but not in the inferior olivary nucleus. The results were reproduced in a preliminary experiment in rats with unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. In the substantia nigra from patients who died with Huntington's disease, [3H]strychnine binding tended to be high (150% of control, NS) in both the pars compacta and the reticulata. [3H]Strychnine binding was unaltered in the substantia nigra of patients with senile dementia. Together with previous neurophysiological and neuropharmacological findings, those results support the hypothesis of glycine receptors occurring on dopamine cell bodies and/or dendrites in the substantia nigra.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号