首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4387篇
  免费   438篇
  国内免费   253篇
  5078篇
  2024年   10篇
  2023年   138篇
  2022年   184篇
  2021年   144篇
  2020年   188篇
  2019年   233篇
  2018年   192篇
  2017年   197篇
  2016年   207篇
  2015年   252篇
  2014年   290篇
  2013年   602篇
  2012年   315篇
  2011年   303篇
  2010年   253篇
  2009年   250篇
  2008年   220篇
  2007年   172篇
  2006年   179篇
  2005年   153篇
  2004年   146篇
  2003年   115篇
  2002年   78篇
  2001年   33篇
  2000年   19篇
  1999年   21篇
  1998年   18篇
  1997年   11篇
  1996年   9篇
  1995年   14篇
  1994年   6篇
  1993年   8篇
  1992年   9篇
  1991年   9篇
  1990年   8篇
  1989年   4篇
  1988年   5篇
  1987年   11篇
  1986年   2篇
  1985年   10篇
  1984年   16篇
  1983年   9篇
  1982年   11篇
  1981年   3篇
  1980年   7篇
  1979年   3篇
  1978年   3篇
  1973年   2篇
  1972年   3篇
  1971年   1篇
排序方式: 共有5078条查询结果,搜索用时 0 毫秒
1.
Human pancreatic stellate cells (HPSCs) are an essential stromal component and mediators of pancreatic ductal adenocarcinoma (PDAC) progression. Small extracellular vesicles (sEVs) are membrane-enclosed nanoparticles involved in cell-to-cell communications and are released from stromal cells within PDAC. A detailed comparison of sEVs from normal pancreatic stellate cells (HPaStec) and from PDAC-associated stellate cells (HPSCs) remains a gap in our current knowledge regarding stellate cells and PDAC. We hypothesized there would be differences in sEVs secretion and protein expression that might contribute to PDAC biology. To test this hypothesis, we isolated sEVs using ultracentrifugation followed by characterization by electron microscopy and Nanoparticle Tracking Analysis. We report here our initial observations. First, HPSC cells derived from PDAC tumors secrete a higher volume of sEVs when compared to normal pancreatic stellate cells (HPaStec). Although our data revealed that both normal and tumor-derived sEVs demonstrated no significant biological effect on cancer cells, we observed efficient uptake of sEVs by both normal and cancer epithelial cells. Additionally, intact membrane-associated proteins on sEVs were essential for efficient uptake. We then compared sEV proteins isolated from HPSCs and HPaStecs cells using liquid chromatography–tandem mass spectrometry. Most of the 1481 protein groups identified were shared with the exosome database, ExoCarta. Eighty-seven protein groups were differentially expressed (selected by 2-fold difference and adjusted p value ≤0.05) between HPSC and HPaStec sEVs. Of note, HPSC sEVs contained dramatically more CSE1L (chromosome segregation 1–like protein), a described marker of poor prognosis in patients with pancreatic cancer. Based on our results, we have demonstrated unique populations of sEVs originating from stromal cells with PDAC and suggest that these are significant to cancer biology. Further studies should be undertaken to gain a deeper understanding that could drive novel therapy.  相似文献   
2.
3.
4.
  1. Download : Download high-res image (147KB)
  2. Download : Download full-size image
Highlights
  • •Sufficient tumor tissues are often unavailable large HLA peptidome discovery.
  • •Using patient derived xenograft (PDX) tumors can overcome this limitation.
  • •The large PDX HLA peptidomes expand significantly those of the original biopsies.
  • •The HLA peptidomes of the PDX tumors included many tumor antigens.
  相似文献   
5.
Comparative two-dimensional electrophoresis showed six proteins, which were significantly produced in the root of salt-tolerant barley. These proteins were identified as stress/defense-related proteins that do not scavenge reactive oxygen species directly, suggesting that salt-tolerant barley develops not only an antioxidative system, but also physical and biochemical changes to cope with salt stress.  相似文献   
6.
Summary In bacteria 5-aminolevulinate, the universal precursor in the biosynthesis of the porphyrin nucleus of hemes, chlorophylls and bilins is synthesised by two different pathways: in non-sulphur purple bacteria (Rhodobacter) or Rhizobium 5-aminolevulinate synthase condenses glycine and succinyl-CoA into 5-aminolevulinate as is the case in mammalian cells and yeast. In cyanobacteria, green and purple sulphur bacteria, as in chloroplasts of higher plants and algae a three step pathway converts glutamate into 5-aminolevulinate. The last step is the conversion of glutamate 1-semialdehyde into 5-aminolevulinate. Using a cDNA clone encoding glutamate 1-semialdehyde aminotransferase from barley, genes for this enzyme were cloned from Synechococcus PCC6301 and Escherichia coli and sequenced. The popC gene of E. coli, previously considered to encode 5-aminolevulinate synthase, appears to be a structural gene for glutamate 1-semialdehyde aminotransferase. Domains with identical amino acid sequences comprise 48% of the primary structure of the barley, cyanobacterial and putative E. coli glutamate 1-semialdehyde aminotransferases. The cyanobacterial and barley enzymes share 72% identical residues. The peptide containing a likely pyridoxamine phosphate binding lysine is conserved in all three protein sequences.  相似文献   
7.
Summary Calculations of DNA angular parameters in 50 eukaryotic sequences reveal regions of large conformational deviations from ideal DNA around regulatory sites. Frequently, discrete peaks of structural variation are present upstream of genes. Known regulatory regions often include variants of consensus sequences. Thus, imprecise sequences and structures are recognized within large genomic stretches. The existence of structurally wrinkled regions in the vicinity of regulatory sequences is likely to facilitate greatly their recognition by proteins and enzymes.  相似文献   
8.
Summary The three-dimensional structure of goose-type lysozyme (GEWL), determined by x-ray crystallography and refined at high resolution, has similarities to the structures of hen (chicken) eggwhite lysozyme (HEWL) and bacteriophage T4 lysozyme (T4L). The nature of the structural correspondence suggests that all three classes of lysozyme diverged from a common evolutionary precursor, even though their amino acid sequences appear to be unrelated (Grütter et al. 1983).In this paper we make detailed comparisons of goose-type, chicken-type, and phage-type lysozymes. The lysozymes have undergone conformational changes at both the blobal and the local level. As in the globins, there are corresponding -helices that have rigid-body displacements relative to each other, but in some cases corresponding helices have increased or decreased in length, and in other cases there are helices in one structure that have no counterpart in another.Independent of the overall structural correspondence among the three lysozyme backbones is another, distinct correspondence between a set of three consecutive -helices in GEWL and three consecutive -helices in T4L. This structural correspondence could be due, in part, to a common energetically favorable contact between the first and the third helices.There are similarities in the active sites of the three lysozymes, but also one striking difference. Glu 73 (GEWL) spatially corresponds to Glu 35 (HEWL) and to Glu 11 (T4L). On the other hand, there are two aspartates in the GEWL active site, Asp 86 and Asp 97, neither of which corresponds exactly to Asp 52 (HEWL) or Asp 20 (T4L). (The discrepancy in the location of the carboxyl groups is about 10 Å for Asp 86 and 4 Å for Asp 97.) This lack of structural correspondence may reflect some differences in the mechanisms of action of three lysozymes. When the amino acid sequences of the three lysozyme types are aligned according to their structural correspondence, there is still no apparent relationship between the sequences except for possible weak matching in the vicinity of the active sites.  相似文献   
9.
Summary Estimates of belowground net primary production (BNP) obtained by using traditional soil core harvest data are subject to a variety of potentially serious errors. In a controlled growth chamber experiment, we examined the aboveground-belowground, labile to structural tissue, and plant to soil dynamics of carbon to formulate a14C dilution technique for potential successful application in the field and to quantify sources of error in production estimates.Despite the fact that the majority of net14C movement between above- and belowground plant parts occurred between the initial labeling and day 5, significant quantities of14C were incorporated into cell-wall tissue throughout the growing period. The rate of this increase at late sampling dates was greater for roots than for shoots. Total loss of assimilated14C was 47% in wheat and 28% in blue grama. Exudation and sloughing in wheat and blue grama, respectively, was 15 and 6% of total uptake and 22 and 8% of total plant production.When root production estimates by14C dilution were corrected for the quantities of labile14C incorporated into structural carbon between two sampling dates, good agreement with actual production was found. The error associated with these estimates was ±2% compared with a range of –119 to –57% for the uncorrected estimates. Our results suggest that this technique has potential field application if sampling is performed the year after labelling.Sources of errors in harvest versus14C dilution estimates of BNP are discussed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号