首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2019年   1篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
排序方式: 共有6条查询结果,搜索用时 125 毫秒
1
1.
Monoclonal antibodies (mAbs) are important therapeutic proteins. One of the challenges facing large-scale production of monoclonal antibodies is the capacity bottleneck in downstream processing, which can be circumvented by using magnetic stimuli-responsive polymer nanoparticles. In this work, stimuli-responsive magnetic particles composed of a magnetic poly(methyl methacrylate) core with a poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPAM-co-AA)) shell cross-linked with N, N'-methylenebisacrylamide were prepared by miniemulsion polymerization. The particles were shown to have an average hydrodynamic diameter of 317 nm at 18°C, which decreased to 277 nm at 41°C due to the collapse of the thermo-responsive shell. The particles were superparamagnetic in behavior and exhibited a saturation magnetization of 12.6 emu/g. Subsequently, we evaluated the potential of these negatively charged stimuli-responsive magnetic particles in the purification of a monoclonal antibody from a diafiltered CHO cell culture supernatant by cation exchange. The adsorption of antibodies onto P(NIPAM-co-AA)-coated nanoparticles was highly selective and allowed for the recovery of approximately 94% of the mAb. Different elution strategies were employed providing highly pure mAb fractions with host cell protein (HCP) removal greater than 98%. By exploring the stimuli-responsive properties of the particles, shorter magnetic separation times were possible without significant differences in product yield and purity.  相似文献   
2.
Podophyllotoxin (PPT) is a chemotherapeutic agent which has shown significant anti-cancer effects through inhibiting microtubule assembly. However, because of the poor water solubility and obvious side effects, PPT cannot be used in clinical cancer therapy. In order to solve these problems, a novel glutathione-responsive PPT conjugate has been synthesized in which PPT was linked to an anti-mitotic cell penetrating peptide (PRA) via a disulfide linkage. In particular, the as-prepared PPT-PRA conjugate can self-assemble into vesicle in water, furthermore, another anti-cancer drug (doxorubicin was chosen as an example) can be loaded in the vesicle for synergistic drug delivery. For better cancer cells targeting, the vesicle was then modified with folic acid (FA). The results indicated that the as-prepared FA modified drug-loaded vesicle not only could overcome the poor water solubility and side effects of PPT but also exhibited targeted toxicity and synergistic therapeutic effect.  相似文献   
3.
The development of stimuli-responsive materials in response to the molecules involved in biological processes has gained increased attentions. In this work, carboxymethyl chitosan (CM-chitosan) and poly(γ-glutamic acid) (pGlu) were reacted with a naturally occurring compound, genipin, leading to the formation of genipin-crosslinked CM-chitosan/pGlu conjugates with fluorescence emissions. The genipin-conjugated polymers were sensitive to the oxidation product of glucose, gluconic acid and hydrogen peroxide (H2O2). Fluorescence emissions of the polymers were quenched by gluconic acid and H2O2. An increase in the hydrodynamic diameter together with the quenching of fluorescence indicated that the genipin-conjugated polymers were self-aggregated into nanoparticles, in response to the stimulus of gluconic acid (but not for H2O2). Bovine serum albumin (BSA) could be loaded in the self-aggregated nanoparticles, and the incorporated BSA slowly released from the nanoparticles under hyper-gluconic acid conditions. This material is hence proposed as a stimuli-responsive material for optical sensing and protein delivery purposes.  相似文献   
4.
Rare cells already have become established indicators for disease diagnosis, to help track prognosis, and in developing personalized therapy. Numerous techniques have been developed to effectively and specifically detect and sort rare cells and cell isolation techniques have gained much attention among researchers in the last few decades. Recent developments in nanotechnologies and microfluidics have been used with great promise towards these goals. The research emphasis has also shifted from simple detection with microfluidic devices to comprehensive isolation, collection and subsequent analysis with integrated and automated systems. The first challenge in post-isolation analysis is cell detachment from substrates, while keeping cells viable and unperturbed. In this review, various methods used for cell detachments are discussed. For effective cell sorting, the detachment is identified as critical criteria for selecting substrates and methods.  相似文献   
5.
The past few decades have witnessed the development of novel naturally inspired biomimetic materials, such as polysaccharides and proteins. Likewise, the seemingly exponential evolution of genetic-engineering techniques and modern biotechnology has led to the emergence of advanced protein-based materials with multifunctional properties. This approach allows extraordinary control over the architecture of the polymer, and therefore, monodispersity, controlled physicochemical properties, and high sequence complexity that would otherwise be impossible to attain. Elastin-like recombinamers (ELRs) are emerging as some of the most prolific of these protein-based biopolymers. Indeed, their inherent properties, such as biocompatibility, smart nature, and mechanical qualities, make these recombinant polymers suitable for use in numerous biomedical and nanotechnology applications, such as tissue engineering, "smart" nanodevices, drug delivery, and protein purification. Herein, we present recent progress in the biotechnological applications of ELRs and the most important genetic engineering-based strategies used in their biosynthesis.  相似文献   
6.
The application of organic polymers and inorganic/organic hybrid systems in numerous fields of biotechnology has seen a considerable growth in recent years. Typically, organic polymers with diverse structures, compositional variations and differing molecular weights have been utilized to assemble polymeric nanosystems such as polymeric micelles, polymersomes, and nanohydrogels with unique features and structural properties. The architecture of these polymeric nanosystems involves the use of both hydrophobic and hydrophilic polymeric blocks, making them suitable as vehicles for diagnostic and therapeutic applications. Recently, “smart” or “intelligent” polymers have attracted significant attention in the biomedical field wherein careful introduction of specific polymeric modalities changes a banal polymeric nanosystem to an advanced stimuli-responsive nanosystem capable of performing extraordinary functions in response to an internal or external trigger such as pH, temperature, redox, enzymes, light, magnetic, or ultrasound. Further, incorporation of inorganic nanoparticles such as gold, silica, or iron oxide with surface-bound stimuli-responsive polymers offers additional advantages and multifunctionality in the field of nanomedicine. This review covers the physical properties and applications of both organic and organic/inorganic hybrid nanosystems with specific recent breakthroughs in drug delivery, imaging, tissue engineering, and separations and provides a brief discussion on the future direction.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号