首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1750篇
  免费   214篇
  国内免费   66篇
  2024年   4篇
  2023年   32篇
  2022年   24篇
  2021年   51篇
  2020年   87篇
  2019年   84篇
  2018年   59篇
  2017年   88篇
  2016年   78篇
  2015年   71篇
  2014年   78篇
  2013年   105篇
  2012年   61篇
  2011年   65篇
  2010年   59篇
  2009年   121篇
  2008年   117篇
  2007年   115篇
  2006年   114篇
  2005年   108篇
  2004年   77篇
  2003年   58篇
  2002年   44篇
  2001年   43篇
  2000年   25篇
  1999年   48篇
  1998年   25篇
  1997年   23篇
  1996年   23篇
  1995年   17篇
  1994年   19篇
  1993年   13篇
  1992年   13篇
  1991年   11篇
  1990年   8篇
  1989年   7篇
  1988年   10篇
  1987年   8篇
  1986年   7篇
  1985年   8篇
  1984年   3篇
  1982年   2篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1975年   3篇
  1974年   1篇
  1973年   7篇
  1971年   2篇
排序方式: 共有2030条查询结果,搜索用时 15 毫秒
1.
Stable isotope analysis was used to investigate the migratory status and to determine the relative contribution of allochthonous and autochthonous sources of carbon for the major riverine fish species ( Barbus altianalis and Labeo victorianus ) in rivers draining the Kenyan side of Lake Victoria. The two fish species derived carbon from both C4 and C3 plant sources, although L. victorianus exhibited less enriched isotopic carbon values. Fish samples from stations under direct influence of effluents from sugar factories exhibited enriched δ13C signals. Assuming that this reflects carbon sourcing from riparian C4 plants, it suggests that carbon from terrestrial sources can be a major energy source in some rivers. This heavy carbon enrichment associated with sugar factories was spatially restricted and occurred in all seasons, implying that sub-populations of the two fish species are non-migratory. The large migratory populations of these two species, for which Lake Victoria was once famous, may be no more.  相似文献   
2.
3.
The dissolved inorganic carbon (DIC) cycle in a softwater lake was studied using natural variations of the stable isotopes of carbon,12C and13C. During summer stratification there was a progressive decrease in epilimnion DIC concentration with a concomitant increase in 13CDIC), due to preferential uptake of12C by phytoplankton and a change in the dominant CO2 source from inflow andin situ oxidation to invasion from the atmosphere. There was an increase in hypolimnion DIC concentration throughout summer with a concomitant general decrease in 13CDIC from oxidation of the isotopically light particulate organic carbon that sank down through the thermocline from the epilimnion.Mass balance calculations of DI12C and DI13C in the epilimnion for the summer (June 23–September 25) yield a mean rate of net conversion of DIC to organic carbon (Corg) of 430 ± 150 moles d-1 (6.5 ± 1.8 m moles m-2 d-1. Net CO2 invasion from the atmosphere was 420 ± 120 moles d-1 (6.2 ± 1.8 m moles m-2 d-1) with an exchange coefficient of 0.6 ± 0.3m d-1. These results imply that at least for the summer months the phytoplankton obtained about 90% of their carbon from atmosphere CO2. About 50% of CO2 invasion and conversion to Corg for the summer occurred during a two week interval in mid-summer.DIC concentration increased in the hypolimnion at a rate of 350 ± 70 moles DIC d-1 during summer stratification. The amount of DIC added to the hypolimnion was equivalent to 75 ± 20% of net conversion of DIC to Corg in the euphotic zone over spring and summer implying rapid degradation of POC in the hypolimnion. The 13C of DIC added to the deep water (-22.) was too heavy to have been derived from oxidation of particulate organic carbon alone. About 20% of the added DIC must have diffused from hypolimnetic sediments where relatively heavy CO2 (-7) was produced by a combination of POC oxidation and as a by-product of methanogenesis.  相似文献   
4.
Copper absorption was measured at two levels of dietary zinc in six healthy young men who were confined to a metabolic unit for a 75 d study of zinc utilization. A diet of conventional foods was fed, providing either 16.5 or 5.5 mg zinc and 1.3 mg copper daily. Copper absorption was determined by feeding65Cu, a stable isotope of copper, once during the 16.5 mg Zn diet and near the beginning and end of the 5.5 mg Zn diet. Apparent copper absorption averaged 48.1% when the 16.5 mg Zn diet was fed. This was significantly higher than the averages of 37.2 and 38.5% when the 5.5 mg Zn diet was fed. Absorption also differed significantly among subjects. Fecal copper did not differ between diets or among subjects. All subjects were in positive copper balance at both levels of dietary zinc. These results suggest that a dietary zinc intake slightly above the Recommended Dietary Allowance of 15 mg/d does not increase fecal copper loss and does not interfere with copper absorption.  相似文献   
5.
Correlations between carbon isotope ratio and microhabitat in desert plants   总被引:31,自引:0,他引:31  
Summary Water is usually considered to be the key limiting factor for growth of desert plants, yet there is little information available of the water-use efficiency of species within a desert community. Leaf carbon isotope ratios, an indicator of long-term intercellular carbon dioxide concentrations and thus of water-use efficiency in C3 plants, were measured on species occurring within a Sonoran Desert community, consisting of wash, transition and slope microhabitats. Along a soil moisture gradient from the relatively wetter wash to the relatively drier slope, leaf carbon isotope ratios increased in all species, indicating that water-use efficiency increased as soil water availability decreased. Leaf carbon isotope ratios of long-lived perennials were substantially more positive than in short-lived perennials, even though plants were growing adjacent to each other. Leaf carbon isotope ratio and leaf duration (evergreen versus deciduous) were not correlated with each other. The results are discussed in terms of how the efficiency of water use may affect community structure and composition.  相似文献   
6.
Summary Natural carbon and nitrogen isotope ratios were measured in different compartments (needles and twigs of different ages and crown positions, litter, understorey vegetation, roots and soils of different horizons) on 5 plots of a healthy and on 8 plots of a declining Norway spruce (Picea abies (L.) Karst.) forest in the Fichtelgebirge (NE Bavaria, Germany), which has recently been described in detail (Oren et al. 1988a; Schulze et al. 1989). The 13C values of needles did not differ between sites or change consistently with needle age, but did decrease from the sun-to the shade-crown. This result confirms earlier conclusions from gas exchange measurements that gaseous air pollutants did no long-lasting damage in an area where such damage was expected. Twigs (13C between-25.3 and-27.8) were significantly less depleted in 13C than needles (13C between-27.3 and-29.1), and 13C in twigs increased consistently with age. The 15N values of needles ranged between-2.5 and-4.1 and varied according to stand and age. In young needles 15N decreased with needle age, but remained constant or increased in needles that were 2 or 3 years old. Needles from the healthy site were more depleted in 15N than those from the declining site. The difference between sites was greater in old needles than in young ones. This differentiation presumably reflects an earlier onset of nitrogen reallocation in needles of the declining stand. 15N values in twigs were more negative than in needles (-3.5 to-5.2) and showed age- and stand-dependent trends that were similar to the needles. 15N values of roots and soil samples increased at both stands with soil depth from-3.5 in the organic layer to +4 in the mineral soil. The 15N values of roots from the mineral soil were different from those of twigs and needles. Roots from the shallower organic layer had values similar to twigs and needles. Thus, the bulk of the assimilated nitrogen was presumably taken up by the roots from the organic layer. The problem of separation of ammonium or nitrate use by roots from different soil horizons is discussed.  相似文献   
7.
Seasonal carbon isotope discrimination in a grassland community   总被引:11,自引:0,他引:11  
Summary Grassland communities of arid western North America are often characterized by a seasonal increase in ambient temperature and evaporative demand and a corresponding decline in soil moisture availability. As the environment changes, particular species could respond differently, which should be reflected in a number of physiological processes. Carbon isotope discrimination varies during photosynthetic activity as a function of both stomatal aperture and the biochemistry of the fixation process, and provides an integrated measure of plant response to seasonal changes in the environment. We measured the seasonal course of carbon isotope discrimination in 42 grassland species to evaluate changes in gas exchange processes in response to these varying environmental factors. The seasonal courses were then used to identify community-wide patterns associated with life form, with phenology and with differences between grasses and forbs. Significant differences were detected in the following comparisons: (1) Carbon isotope discrimination decreased throughout the growing season; (2) perennial species discriminated less than annual species; (3) grasses discriminated less than forbs; and (4) early flowering species discriminated more than the later flowering ones. These comparisons suggested that (1) species active only during the initial, less stressful months of the growing season used water less efficiently, and (2) that physiological responses increasing the ratio of carbon fixed to water lost were common in these grassland species, and were correlated with the increase in evaporative demand and the decrease in soil moisture.  相似文献   
8.
Elemental analyses of mammalian bone (e.g., strontium-calcium ratios, or Sr/Ca) distinguish between herbivores and carnivores; however, the relationships among herbivores are unclear. To study this question, a modern faunal sample from the Nagupande Tsetse Control Area (Zambezi drainage, Northwestern Zimbabwe) was used. This collection has the advantage of well-established geographical controls in addition to a varied fauna, which includes both bovids and suids. The grazing/browsing dietary status of each species was ascertained by means of isotopic analysis of carbon. Clear differences were seen in the δ13C of grazing and browsing animals; a specialized grazer was found to have significantly lower Sr/Ca than less specialized grazers and browsers. In this study it was also possible to examine differences in Sr/Ca by sex; female warthogs were found to have significantly lower Sr/Ca than males. The variation in certain animal groups was found to be abnormal. Implications for reconstruction of prehistoric human diets using trace-element techniques are discussed.  相似文献   
9.
Intramitochondrial Sr2+, similar to Ca2+, inhibits oxidative phosphorylation in intact rat-liver mitochondria. Both Ca2+ and Sr2+ also inhibit the hydrolytic activity of the ATPase in submitochondrial particles. Half-maximal inhibition of ATPase activity was attained at a concentration of 2.5 mM Ca2+ or 5.0 mM Sr2+ when the concentration of Mg2+ in the medium was 1.0 mM. The inhibition of ATPase activity by both cations was strongly decreased by increasing the Mg2+ concentration in the reaction medium. In addition, kinetical data and the determination of the concentration of MgATP, the substrate of the ATPase, in the presence of different concentrations of Ca2+ or Sr2+ strongly indicate that these cations inhibit ATP hydrolysis by competing with Mg2+ for the formation of MgATP. On the basis of a good agreement between these results with submitochondrial particles and the results of titrations of oxidative phosphorylation with carboxyatractyloside or oligomycin in mitochondria loaded with Sr2+ it can be concluded that intramitochondrial Ca2+ or Sr2+ inhibits oxidative phosphorylation in intact mitochondria by decreasing the availability of adenine nucleotides to both the ADP/ATP carrier and the ATP synthase.  相似文献   
10.
The incorporation of [15N]glutamic acid into glutathione was studied in primary cultures of astrocytes. Turnover of the intracellular glutathione pool was rapid, attaining a steady state value of 30.0 atom% excess in 180 min. The intracellular glutathione concentration was high (20-40 nmol/mg protein) and the tripeptide was released rapidly into the incubation medium. Although labeling of glutathione (atom% excess) with [15N]glutamate occurred rapidly, little accumulation of 15N in glutathione was noted during the incubation compared with 15N in aspartate, glutamine, and alanine. Glutathione turnover was stimulated by incubating the astrocytes with diethylmaleate, an electrophile that caused a partial depletion of the glutathione pool(s). Diethylmaleate treatment also was associated with significant reductions of intraastrocytic glutamate, glycine, and cysteine, i.e., the constituents of glutathione. Glutathione synthesis could be stimulated by supplementing the steady-state incubation medium with 0.05 mM L-cysteine, such treatment again partially depleting intraastrocytic glutamate and causing significant reductions of 15N labeling of both alanine and glutamine, suggesting that glutamate had been diverted from the synthesis of these amino acids and toward the formation of glutathione. The current study underscores both the intensity of glutathione turnover in astrocytes and the relationship of this turnover to the metabolism of glutamate and other amino acids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号