首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2008年   1篇
  2001年   1篇
  1998年   2篇
  1997年   1篇
  1991年   1篇
  1986年   1篇
排序方式: 共有7条查询结果,搜索用时 187 毫秒
1
1.
Abstract. 14 old, unlogged, Picea-dominated stands in the moist cool Sub-Boreal Spruce biogeoclimatic subzone of central British Columbia, Canada, were sampled to describe canopy heterogeneity, regeneration patterns and tree population age structures. These stands are composed of Picea engelmannii × glauca hybrids, Abies lasiocarpa and lesser amounts of Pinus contorta and Populus tremuloides, and had survived 124–343 yr since the last stand-destroying wildfire. Canopy cover was patchy and highly variable (ranging from 30.5 % to 86.4 %) but was not significantly related to stand age. Vertical canopy structure was less variable, reflecting the shade-tolerance and live crown ratios (length of live canopy expressed relative to tree height) of component species: 18.8 % for Populus, 20.2 % for Pinus, 46.7 % for Picea and 51.4 % for Abies. Individual stands varied considerably in their population structures and in their stand development trajectories, yet some patterns are evident. Survivors of the initial post-disturbance cohort of trees took 51 to 118 yr (mean = 80, s.d. = 20) to establish. Some stands had all tree species present during stand initiation, while other stands indicated early successional roles for Populus and Pinus, or a late successional role for Abies. Abies recruitment, while often slow in the beginning, occurs uniformly throughout the history of most stands, reflecting the high shade-tolerance of this species. Picea is often recruited in high densities early in stand development, and then (after long periods of exclusion) may be displaced by Abies in some stands but maintains itself in others. Minor, single-tree disturbances (due to bark beetles, root rot, and windthrow) were important in accelerating the reinitiation of Picea in the understory. Results thus suggest that stands from this region can be self-perpetuating in the absence of fire. Yet, post-fire tree populations still clearly dominate these spruce-fir forests, for only the oldest stand had greater basal area in the replacement cohort than in the initial cohort.  相似文献   
2.
Canopy gap area/age distributions and growth mechanisms were examined in a virgin subalpine forest in the White Mountains, New Hampshire, USA. The gap area distribution was negative exponential in form. Whithin gap tree ages varied widely in response to stepwise gap expansion caused by windthrow of peripheral trees or death of standing mature Picea rubens at gap edges. As a consequence, the density of small gaps may have been underestimated and the density of large gaps overestimated. The estimates of canopy turnover time, 303 yr, and of patch birth rate on an area basis, 3.3×10-3 ha new patches/ha land area/yr, were not affected by the gap expansion phenomenon. However, any estimate of patch birth rate as numbers of new patches formed per year would have been too low. Because of increasingly widespread Picea death, the patch area/age distribution of this forest may not currently be in steady-state.  相似文献   
3.
Spruce-fir forests extend along the Appalachian Mountains of eastern North America from 35° to 49° N. This montane vegetation differs from boreal spruce-fir forest in that it is dominated by Picea rubens, has a higher vascular species richness, has wind, rather than fire, dominated dynamics, and has a mean annual temperature above 2 °C. Using field reconnaissance, remote sensing, and literature review we described and modeled the latitude-elevation relationship for Appalachian spruce-fir. The elevation of the sprucefir/deciduous forest ecotone decreases from 1,680 m at 35° N to 150 m at 49° N, while the elevation of treeline (spruce-fir/tundra ecotone) decreases from 1,480 m at 44° N to 550 m at 55° N. Linear regressions gave latitude-elevation relationships of –100 m/lo Latitude for the spruce-fir/deciduous forest ecotone and –83 m/lo Latitude for treeline. These values compare to literature reports of –54 to –230 m/lo Latitude and are most similar to values reported from eastern Asia. The latitude-elevation relationship for eman July temperature ( –94 to –121 m/lo Latitude) was more similar to the slopes of these ecotones than is the slope for mean annual temperature ( –170 to –220 m/lo Latitude). The spruce-fir/deciduous forest ecotone was correlated with a mean July temperature of approximately 17 °C. Treeline was correlated with a mean July temperature of approximately 13 °C.  相似文献   
4.
Qian  Hong  Klinka  Karel  Kayahara  Gordon J. 《Plant Ecology》1998,138(2):161-178
Spatial patterns of plant diversity in the North American boreal forest were examined according to three plant life forms (woody plants, herbaceous plants, and bryophytes) and two taxonomic levels (species and genus), using sixty 9-ha plots sampled in white spruce (Picea glauca (Moench) Voss) and black spruce (Picea mariana (P. Mill.) B.S.P.) ecosystems along a transcontinental transect from the Pacific coast eastwards to the Atlantic coast. The patterns of inventory diversity (represented by alpha diversity), differentiation diversity (represented by the similarity index, habitat-heterogeneity index, similarity decay rate, and length of the first axis in detrended correspondence analysis), and pattern diversity (represented by the mosaic diversity index) were assessed along the transect in both ecosystem types. At the stand level, central North America had the highest alpha diversity in terms of the number of species or genera, and western North America had a higher alpha diversity than eastern North America. At the continental scale, herbaceous plants had the highest beta diversity in terms of floristic change from the eastern to western North America, bryophytes had the lowest beta diversity, and woody plants were in the middle, regardless of ecosystem type and taxonomic level. Central North America had the lowest mosaic diversity across the boreal transect of North America. The white spruce ecosystems had a higher alpha diversity than the black spruce ecosystems regardless of plant life form, taxonomic level and geographic location. The white spruce ecosystems tended to have more bryophytes, less woody plants, and higher species:genus ratio than the black spruce ecosystems. In general, the white spruce and black spruce ecosystems shared the same patterns in diversity changes at different spatial scales, plant life forms, and taxonomic levels across the transect studied. The existing patterns of plant diversity in the North American boreal forest area resulted from a combination of ecological processes and spatial configuration.  相似文献   
5.
Declines in bird populations are an important issue facing conservationists. Although studies have documented bird declines in a variety of lowland habitats, montane habitats are generally under represented in these investigations. Nevertheless, montane habitats are vulnerable because of their restricted geographic distribution as well as their exposure to environmental stressors such as atmospheric deposition and climate change. We surveyed birds at 768 points on 42 transects in montane spruce-fir forests the White Mountains of New Hampshire from 1993–2003. We detected 17,479 individuals of 73 species during this period, of which 10 were abundant enough for analyses. Of these 10 species, three exhibited significant population declines during the survey period: Yellow-bellied Flycatcher (Empidonax flaviventris), Bicknell’s Thrush (Catharus bicknelli) and Magnolia Warbler (Dendroica magnolia). Two of these species (Yellow-bellied Flycatcher and Bicknell’s Thrush) are considered ecological indicator species for montane spruce-fir forest. Declines in these species are an indication that recent concern on the part of conservationists about montane spruce-fir forest and the birds that inhabit them are justified. Our observation that these trends were not reflected in the National Breeding Bird Survey (BBS) analyses, and that one high priority species, the Bicknell’s Thrush, did not occur on BBS routes in New Hampshire during the survey period, argues for the importance of continued efforts to monitor these habitats.  相似文献   
6.
Allen  Thomas R.  Kupfer  John A. 《Plant Ecology》2001,156(1):59-74
High elevation Fraser fir (Abies fraseri) forests of the Southern Appalachians have undergone widespread mortality since the introduction of the balsam woolly adelgid in the 1950s. Resulting changes in ecosystem pattern and process (e.g., stand dynamic processes) have greatly affected floral and faunal communities. In this project, we integrated field observations, geographic information system topographic models, and 1988–1998 satellite imagery to analyze spatial and temporal conditions of Fraser fir and spruce-fir ecosystems in Great Smoky Mountains National Park. Tasseled cap indices (brightness, greenness, and wetness) and associated spectral changes for Landsat TM digital data were statistically modeled by topographic variables. Spectral changes were recorded using change vector analysis (CVA) and spherical geometry at multiple scales: individual sites, local ridges, and across the east-west gradient of the study area. Significant relationships were found between elevation and observed spectral changes and among mountain sites representing the east-west chronosequence of adelgid infestation. Topographic derivatives were related to tasseled cap and CVA measures in summary statistics, regression, and correlation analysis, revealing significantly different mortality and regeneration pathways that were a function of topographic settings. Geographic variations of these vectors also detail the scope of east-west and localized upslope progression of fir mortality. The application of CVA provided the ability to summarize variation in spectral changes (magnitude and direction) and to ascribe measures to mortality and regeneration processes.  相似文献   
7.
Abstract. Fuzzy set ordination was used to examine relationships between tree species and site factors on Mt. Ascutney, Vermont, USA. Prism plots were established at four elevations (455, 610, 760 and 915 m) along contour lines that encircled the mountain. In addition to elevation, which was the most important factor affecting tree species composition, slope, aspect and exposure to solar radiation all affected composition; however, these latter three factors were important only at 455 m. Topographic position was important at higher elevations as well. The responses of tree species to any of these factors were highly individualistic. Plots of the upper bounds of relative basal area of each species against the apparent elevation of sites where that species was found were useful in predicting how important an individual species could become over the course of forest succession. For example, northern hardwoods, which comprise the most common forest type of this region, are not very common on this mountain. This approach shows, however, that they are currently at levels well below their potential maximum; this is probably due to past disturbance.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号