首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
  2022年   1篇
  2019年   1篇
  2006年   1篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1986年   2篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   1篇
排序方式: 共有28条查询结果,搜索用时 312 毫秒
1.
Recent studies indicate that there may be multiple subtypes of [3H]5-hydroxytryptamine ([3H]5-HT) binding sites. Mianserin and spiperone inhibited the specific binding of [3H]5-HT (2-3 nM) to rat brain cortical membranes with shallow displacement curves. The displacement data for spiperone were best described by the presence of three independent binding sites, for which spiperone had high, medium, and low affinities. The displacement data for mianserin were best fitted by two independent, high- and low-affinity sites. The inclusion of mianserin (250 nM) to inhibit [3H]5-HT binding to the mianserin-sensitive site selectively blocked one of the sites discriminated by spiperone. These results suggest the presence of three binding sites for [3H]5-HT, one blocked by low concentrations of spiperone (5-HT1A), one blocked by low concentrations of mianserin (5-HT1C), and one blocked only by high concentrations of both mianserin and spiperone (5-HT1B). Regional differences in the relative densities of the three sites were observed. The hippocampus was rich in 5-HT1A sites, whereas the striatum contained mainly 5-HT1B and 5-HT1C sites. Selective degeneration of 5-HT-containing nerve terminals induced by the neurotoxin 5,7-dihydroxytryptamine increased binding to all three sites in the cerebral cortex. Binding of [3H]5-HT to the three sites was differentially modulated by CaCl2 and guanylimidodiphosphate. The present data suggest the presence of three independent 5-HT1 binding sites having different affinities for mianserin and spiperone and having different regional distributions.  相似文献   
2.
To examine the sensitivities of partially purified dopamine receptors to various dopaminergic agonists and antagonists, canine brain striatum dopamine receptors were enriched by isoelectric focusing. The digitonin-solubilized receptors were prelabelled with [3H]spiperone and focused for two time periods. After 5 h (incomplete focusing), radioactive peaks were detected at pH 6 and 9-11. Only the pH 6 peak revealed drug sensitivities expected of D2 receptors. Receptor recovery of the pH 6 peak was 79% with purification being sevenfold. After focusing overnight to equilibrium, the pH 6 peak further separated into peaks at pH 4.6 and 6.8. The receptor was identified only in the pH 4.6 fraction. The recovery of receptors in the pH 4.6 peak was low (10%), indicating little enrichment of the receptor. The rank order of binding of neuroleptics and dopamine agonists to the purified material was similar to that of the original preparation of soluble receptors. Dopamine did not bind to the purified pH 4.6 fraction unless the phosphate buffer (used during focusing) was replaced with Tris buffer. The absence of receptors in the pH 6.8 and pH 10 fractions, although both contained prelabeled [3H]spiperone, indicates the importance of testing agonists and antagonists on each fraction at each step in purification.  相似文献   
3.
[3H]Spiperone specific binding by microsomal membranes isolated from sheep caudate nucleus is decreased by trypsin and phospholipase A2 (Vipera russeli), but is insensitive to neuraminidase. The inhibitory effect of phospholipase A2 is correlated with phospholipid hydrolysis. After 15 min of phospholipase (5 micrograms/mg protein) treatment, a maximal effect is observed; the maximal lipid hydrolysis is about 56% and produces 82% reduction in [3H]spiperone binding. Equilibrium binding studies in nontreated and treated membranes showed a reduction in Bmax from a value of 388 +/- 9.2 fmol/mg protein before phospholipase treatment to a value of 52 +/- 7.8 fmol/mg protein after treatment, but no change in affinity (KD = 0.24 +/- 0.042 nM) was observed. Albumin washing of treated membranes removes 47% of lysophosphatidylcholine produced by phospholipid hydrolysis without recovering [3H]spiperone binding activity. However, the presence of 2.5% albumin during phospholipase A2 action (1.5 micrograms/mg protein) prevents the inhibitory effect of phospholipase on [3H]spiperone binding to the membranes, although 28% of the total membrane phospholipid is hydrolysed. Lysophosphatidylcholine, a product of phospholipid hydrolysis, mimics the phospholipase A2 effect on receptor activity, but the [3H]spiperone binding inhibition can be reversed by washing with 2.5% defatted serum albumin. Addition of microsomal lipids to microsomal membranes pretreated with phospholipase does not restore [3H]spiperone stereospecific binding. It is concluded that the phospholipase-mediated inhibition of [3H]spiperone binding activity results not only from hydrolysis of membrane phospholipids, but also from an alteration of the lipid environment by the end products of phospholipid hydrolysis.  相似文献   
4.
Abstract: To examine the binding of antipsychotic drugs to living neurons, we applied fluoroprobe derivatives of the D2 antagonist spiperone to mesolimbic system neurons in postnatal culture. We found that rhodamine- N -( p -aminophenethyl)spiperone (rhodamine-NAPS) stereospecifically labeled the plasma membranes of 38 ± 6% of ventral tegmental area neurons, 22 ± 7% of which were dopaminergic, and 50 ± 6% of medium-sized putatively GABAergic nucleus accumbens neurons, with a time constant of ∼8 min. In contrast, the BODIPY derivative of NAPS rapidly labeled intracellular sites in all neurons in a punctate pattern, consistent with acidotropic uptake. Native antipsychotics also show acidotropic uptake, which we visualized by their displacement of the fluorescent weak base vital dye acridine orange from acidic intracellular compartments. We found that acidotropic uptake correlated best with the partition coefficients of the drugs. With a time constant of 23 min, rhodamine-NAPS labeled all neurons in a pattern suggestive of lipophilic solvation. Thus, initially rhodamine-NAPS makes possible visualization of D2 receptors on living neurons; however, acidotropic uptake and lipophilic solvation obscure receptor labeling and may account for time-dependent factors in the action of antipsychotic drugs, as well as affect their use as radioreceptor ligands.  相似文献   
5.
Abstract: Cations of various size and charge were used as atomic scale probes of D1 and D2 dopamine receptors. Those cations that perturbed the binding of D1- and D2-selective dopamine receptor antagonists were identified by screening at 5 m M cation. Pseudo-noble-gas-configuration d-transition metals, such as zinc, exerted a complete inhibition of specific binding, whereas most other cations had little or no effect. The nature of zinc's actions was characterized by measuring the radioligand binding properties of [3H]SCH-23390 and [3H]methylspiperone to cloned D1A and D2L dopamine receptors in either the presence or absence of Zn2+. Zinc exerts a low-affinity, dose-dependent, EDTA-reversible inhibition of the binding of subtype-specific antagonists primarily by decreasing the ligands' affinity for their receptors. The mechanism of zinc inhibition appears to be allosteric modulation of the dopamine receptor proteins because zinc increases the dissociation constant ( K D) of ligand binding, Schild-type plots of zinc inhibition reach a plateau, and zinc accelerates antagonist dissociation rates. Here we demonstrate the effect of zinc on the binding of D1- and D2-selective antagonists to cloned dopamine receptors and show that the inhibition by zinc is through a dose-dependent, reversible, allosteric, two-state modulation of dopamine receptors.  相似文献   
6.
Abstract: Specific binding of tritiated dopamine, spiperone, and N-propylnorapomorphine was examined in subcellular fractions from bovine caudate nucleus. All fractions contained at least two sets of specific binding sites for [3H]spiperone (KD 1aPP= 0.2 nM, KD 2aPP= 2.2 nM), the higher affinity sites accounting for one-third to one-eighth of the total. [3H]Spiperone binding was slightly enriched over the total particulate fraction in P2, P3, SPM, and a crude fraction of synaptic mitochondria. A microsomal subfraction (P3B2) exhibited the highest specific binding capacity obtained, representing a fourfold enrichment over the total particulate fraction. [3H]Dopamine exhibited apparent binding to a single class of high-affinity sites in all fractions examined (KDaPP= 4.0 nM). A greater than twofold enrichment was observed in all fractions except myelin and P3, with a fivefold enrichment in SPM and P3B2. At least two classes of receptors were labeled by [3H]-N-propylnorapomorphine (KD 1aPP= 0.55 nM, KD 2aPP= 20 nM), using 50 nM-spiperone together with 100 nM-dopamine to define nonspecific binding. Although binding to the higher affinity site was displaced by spiperone, and lower affinity binding by dopamine, comparison of receptor densities with values obtained by using [3H]spiperone and [3H]dopamine directly suggested that [3H]-N-propylnorapomorphine labeled additional sites. We have also examined a postsynaptic membrane (PSM) fraction obtained from SPM by successive extraction with salt and EGTA followed by sonication and separation on a density gradient. [3H]Spiperone binding in PSM was enriched two- to threefold over unfractionated SPM with a concomitant decrease in [3H]dopamine binding. The enrichment in spiperone receptors was almost entirely due to an increase in the number of lower affinity binding sites, suggesting that these sites may be associated with the postsynaptic membrane.  相似文献   
7.
Abstract— [3H]Spiperone binding has been used to study neurotransmitter receptors in bovine caudate nucleus in displacement and saturation binding experiments. Displacement curves for several antagonists are biphasic and can be analysed into contributions from dopaminergic and serotonergic sites. Antagonist binding at each class of sites follows the simple mass action equations for binding at a homogeneous set of sites (slope factors close to unity). Agonist displacement curves also indicate complex behaviour, but agonist binding to the dopaminergic sites alone exhibits heterogeneous properties (slope factors less than unity). Saturation binding experiments have been conducted on each class of site, defining dopaminergic binding of [3H]spiperone as that binding displaced by 0.1 m m -dopamine and serotonergic binding as that displaced by 0.3 μ m -mianserin. In each case, a single class of binding sites was detected: the binding parameters derived in this way have been used to calculate the proportions of the two classes of binding site observed in displacement experiments. Good agreement was obtained between calculated and observed values.  相似文献   
8.
Since previous work had shown that brain D2 3,4-dihydroxyphenylethylamine (dopamine) receptors were only partly converted from their high-affinity state to their low-affinity state, we here tested whether it was possible to obtain a complete 100% conversion of these receptors into their low-affinity state. It was first essential to resolve the components of [3H]spiperone binding to dopaminergic sites and nondopaminergic sites in rat striatal homogenates. In the presence of 50 microM S-sulpiride (to occlude the dopaminergic sites), therefore, we first determined that the residual binding of [3H]spiperone (approximately 20%) was inhibited by serotonergic agonists much more effectively than dopamine or noradrenaline, thus identifying the serotonergic component of [3H]spiperone binding. Thus, dopamine (or ADTN) inhibited the binding of [3H]spiperone at a high-affinity site (with dissociation constant of 10 nM dopamine), at a low-affinity site (with dissociation constant of 2,000 nM dopamine), and at the serotonergic site (with dissociation constant of 50,000 nM dopamine). In the absence of sodium ions, the high-affinity site was about 50% occupied by [3H]spiperone, and guanine nucleotide had no effect on this proportion. In the presence of 120 mM NaCl, however, the high-affinity site was reduced to 15% and guanine nucleotide completely eliminated this high-affinity site, 100% of the sites having been completely converted to their low-affinity state. Using [3H]N-propyl-norapomorphine to label the high-affinity state of the dopamine receptor, 50% conversion into the low-affinity state occurred at 45 mM LiCl, 69 mM NaCl, and 202 mM KCl. We conclude that it is possible to convert brain D2 dopamine receptors completely into their low-affinity state, in the presence of NaCl and a guanine nucleotide, providing that appropriate allowance is made for the serotonergic component of [3H]spiperone binding.  相似文献   
9.
Abstract: To examine the substrate for dopamine (DA) synaptic action in the nucleus accumbens (nAcc), we visualized the cellular and subcellular distribution of DA receptors on postnatal nAcc neurons in culture using fluoroprobe derivatives of DA receptor ligands. Previously, we have shown that rhodamine- N -( p -aminophenethyl)-spiperone (NAPS) (10 n M ), a derivative of the D2 antagonist spiperone, labels D2-like receptors on living nAcc neurons. We now show that rhodamine-Sch-23390 (30 n M ), a derivative of the D1 antagonist, labels D1-like receptors. Putative specific membrane labeling reached a plateau after about 20 min. Labeling was stereospecific, as it was unaffected by competition with (−)-butaclamol, but blocked with (+)-butaclamol. We found that 52 ± 7% of nAcc medium-sized neurons showed D1 labeling, which extended onto the dendrites. Labeling was also seen on presynaptic terminals, often abutting D1-positive and D1-negative cell bodies, consistent with a presynaptic modulatory role for D1 receptors. Larger neurons, which may be GABAergic or cholinergic interneurons, were also labeled. By sequential labeling first with rhodamine-Sch-23390 and then rhodamine-NAPS, we found that 38 ± 6% of medium-sized neurons express both D1- and D2-like receptors, indicating that D1–D2 interactions may occur at the level of single postsynaptic neurons.  相似文献   
10.
A series of detergents of varying chemical properties has been tested for solubilisation of bovine caudate nucleus D2 dopamine receptors using [3H]spiperone binding to assay the solubilised sites. The properties of the lysophosphatidylcholine (LPC)- and 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulphonate (CHAPS)-solubilised preparations are described in detail. The preparations are truly solubilised, and sucrose density gradient and gel filtration data are reported. Specific [3H]spiperone binding in the LPC-solubilised preparation assayed at 4 degrees C is solely to D2 dopamine receptors. If the assay temperature is raised to 25 degrees C, the amount of specific [3H]spiperone binding is largely unchanged, but it forms a greater proportion of the total [3H]spiperone binding owing to a reduction in nonstereospecific (spirodecanone) [3H]spiperone binding at the higher temperature. The effect of raising the assay temperature is important as it enables more precise determinations of specific [3H]spiperone binding to be made. Part of the specific [3H]spiperone binding at 25 degrees C is to solubilised S2 serotonin receptors in addition to D2 dopamine receptors. Good correlations are observed between the affinities for binding of ligands to the solubilised D2 receptors and corresponding data obtained on membrane-bound receptors. Agonist binding in LPC-solubilised preparations is insensitive to guanine nucleotides. It is speculated that the spirodecanone sites represent, in part, proteolysed or damaged D2 dopamine, or S2 serotonin, receptors. In the CHAPS-solubilised preparation the pharmacological profile of [3H]spiperone binding is unclear when assayed at 4 degrees C, but in assays at 25 degrees C a clear serotonin S2 receptor component of specific [3H]spiperone binding can be discerned.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号