首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4066篇
  免费   336篇
  国内免费   118篇
  4520篇
  2024年   17篇
  2023年   70篇
  2022年   97篇
  2021年   131篇
  2020年   180篇
  2019年   269篇
  2018年   212篇
  2017年   117篇
  2016年   119篇
  2015年   129篇
  2014年   229篇
  2013年   256篇
  2012年   127篇
  2011年   178篇
  2010年   154篇
  2009年   187篇
  2008年   203篇
  2007年   213篇
  2006年   175篇
  2005年   168篇
  2004年   156篇
  2003年   134篇
  2002年   112篇
  2001年   62篇
  2000年   53篇
  1999年   67篇
  1998年   48篇
  1997年   53篇
  1996年   42篇
  1995年   37篇
  1994年   36篇
  1993年   25篇
  1992年   29篇
  1991年   19篇
  1990年   28篇
  1989年   20篇
  1988年   15篇
  1987年   9篇
  1986年   17篇
  1985年   21篇
  1984年   56篇
  1983年   59篇
  1982年   58篇
  1981年   46篇
  1980年   41篇
  1979年   34篇
  1978年   4篇
  1977年   4篇
  1975年   2篇
  1974年   1篇
排序方式: 共有4520条查询结果,搜索用时 15 毫秒
1.
DNA glycosylases remove damaged or modified nucleobases by cleaving the N-glycosyl bond and the correct nucleotide is restored through subsequent base excision repair. In addition to excising threatening lesions, DNA glycosylases contribute to epigenetic regulation by mediating DNA demethylation and perform other important functions. However, the catalytic mechanism remains poorly defined for many glycosylases, including MBD4 (methyl-CpG binding domain IV), a member of the helix-hairpin-helix (HhH) superfamily. MBD4 excises thymine from G·T mispairs, suppressing mutations caused by deamination of 5-methylcytosine, and it removes uracil and modified uracils (e.g., 5-hydroxymethyluracil) mispaired with guanine. To investigate the mechanism of MBD4 we solved high-resolution structures of enzyme-DNA complexes at three stages of catalysis. Using a non-cleavable substrate analog, 2′-deoxy-pseudouridine, we determined the first structure of an enzyme-substrate complex for wild-type MBD4, which confirms interactions that mediate lesion recognition and suggests that a catalytic Asp, highly conserved in HhH enzymes, binds the putative nucleophilic water molecule and stabilizes the transition state. Observation that mutating the Asp (to Gly) reduces activity by 2700-fold indicates an important role in catalysis, but probably not one as the nucleophile in a double-displacement reaction, as previously suggested. Consistent with direct-displacement hydrolysis, a structure of the enzyme-product complex indicates a reaction leading to inversion of configuration. A structure with DNA containing 1-azadeoxyribose models a potential oxacarbenium-ion intermediate and suggests the Asp could facilitate migration of the electrophile towards the nucleophilic water. Finally, the structures provide detailed snapshots of the HhH motif, informing how these ubiquitous metal-binding elements mediate DNA binding.  相似文献   
2.
Andreas Barth 《BBA》2007,1767(9):1073-1101
This review discusses the application of infrared spectroscopy to the study of proteins. The focus is on the mid-infrared spectral region and the study of protein reactions by reaction-induced infrared difference spectroscopy.  相似文献   
3.
Compelling evidence suggests that low-density lipoprotein (LDL) is oxidized by cells within the arterial intima and that, once oxidized, it is profoundly atherogenic. The precise mechanism(s) by which cells promote the oxidation of LDL in vivo are not known; in vitro, however, oxidation of LDL can be enhanced by a number of differing mechanisms, including reaction with free and protein-bound metal ions, thiols, reactive oxygen species, lipoxygenase, myeloperoxidase and peroxynitrite. This review is concerned with the mechanisms by which cells enhance the oxidation of LDL in the presence of transition metals; in particular, the regulation, pro- and anti-oxidant consequences, and mechanism of action of cellular thiol production are examined, and contrasted with thiol-independent oxidation of LDL in the presence of transition metals.  相似文献   
4.
The kinetics of the electrostatically induced phase transition of dimyristoyl phosphatidic acid bilayers was followed using the stopped-flow technique. The phase transition was triggered by a fast change in the pH or the magnesium ion concentration and followed by recording the time dependence of the absorbance. When the phase transition was induced by a pH jump the time course of the absorbance could be described by two exponentials, their time constants displaying the for cooperative processes characteristic maximum at the transition midpoint. The time constants are in the 10 and 100 ms range for the H+ triggered transition from the fluid to the ordered state. A third slower process shows no appreciable temperature dependence and is probably caused by vesicle aggregation. For the OH--induced transition fron the ordered to the fluid state the time constants are in the 100 and 1000 ms range. The fluid-ordered transition could also be triggered by addition of magnesium ions. Of the several observed processes only the fastest in the 10–100 ms time range could definitely be assigned to the fluid-ordered transition while the others are due to aggregation phenomena. The experimental data were compared with results obtained from pressure jump experiments and could be interpreted on the basis of theories for non-equilibrium relaxation.  相似文献   
5.
The effects produced on bacteriorhodopsin by low concentrations of several detergents have been studied by absorption and fourth-derivative spectrophotometry. Sodium dodecyl sulfate induces the appearance of the blue form of bacteriorhodopsin (λmax = 600 nm) at pH values up to 7.0 in a reversible manner. The apparent pK of the purple-to-blue transition raised with increasing concentration of SDS. Of the other detergents tested, only sodium dodecyl-N-sarcosinate showed a slight red-shift of the absorption band to 580 nm, whereas sodium taurocholate, Triton X-100 and cetyltrimethylammonium bromide did not favour the appearance of the blue form. The effect of SDS was found to be consistent with a localized conformational change that moves away the counter-ion of the protonated Schiff base.  相似文献   
6.
Casein was conjugated with dextran and galactomannan in a controlled dry state at a relative humidity of 79% and at 60°C for 24 hr. The covalent attachment of polysaccharides to casein was confirmed by SDS-PAGE and HPLC. The emulsifying activity of the casein-dextran and casein-galactomannan conjugates was 1.5 times higher than that of casein. The emulsion stability of the casein-dextran and casein-galactomannan conjugates was 10 times higher than that of casein. The improvement in these emulsifying properties reached a steady state when the conjugation of casein with polysaccharide was done for 24 hr in a controlled dry state, suggesting the rapid formation of conjugates through a Maillard reaction in the case of casein. Compared to commercial emulsifiers, the casein-polysaccharide conjugates showed better emulsifying properties in acidic and high-salt concentration systems.  相似文献   
7.
IntroductionThe purpose of this study was to examine the changes of lower extremity kinetics during walk-to-run (WR) transition and if the changes would follow a non-linear trend within the five strides before WR transition using a constant acceleration protocol.MethodsFourteen participants performed gait transition on the instrumented treadmill at a constant acceleration. Peak, time to peak, and movement and power of hip, knee and ankle joints were recorded and analyzed in sagittal plane for five strides before gait transition. Three Two-way MANOVA were employed to examine the differences of kinetic measures among the five strides. Univariate analysis and Post-Hoc Tukey’s test would be applied if needed. Also, Post hoc polynomial trend analyses were used to examine the trend of the kinetic measures that significantly changed during the five strides.ResultsCompared to the first four strides, significant differences were observed for peaks moments, joint powers, and time to peaks in the last stride before running at ankle, knee, and hip joints respectively. In general, the changes of kinetic variables were following a quadratic trend during the five strides before running.ConclusionJoint kinetic measures actively change in non-linear patterns during the five strides before running to prepare for the gait transition, indicating that the gait transition is an active reorganization rather than a passive reaction.  相似文献   
8.
Partition coefficients of the insecticide γ-1,2,3,4,5,6-hexachlorocyclohexane (trivially, lindane) were determined in model and native membranes. Partition in egg phosphatidylcholine bilayers decreases linearly with temperature, over a range (10–40°C) at which the lipid is in the liquid-crystalline state. Addition of 50 mol% cholesterol dramatically decreases partition (2100 falls to 100, at 10°C) and abolishes the temperature dependence. First-order phase transitions of dimyristoyl-, dipalmitoyl- and distearoylphosphatidylcholines (DMPC, DPPC and DSPC) are accompanied by a sharp increase in lindane partition. Apparently, the insecticide is easily accommodated in bilayers of short-aliphatic-chain lipids, since the partitions were 2450, 600 and 50 in DMPC, DPPC and DSPC, respectively, at temperatures 10 Cdeg below the midpoint of their transitions. The lindane partition sequence in native membranes is as follows: mitochondria, sarcoplasmic reticulum, myelin, brain microsomes and erythrocytes. This sequence correlates reasonably well with the relative content of cholesterol and is similar in liposomes of total extracted lipids, although the absolute partitions showed decreased values. Therefore, the presence of proteins in native membranes contributes to the insecticide partition, probably by favouring its interaction with lipids.  相似文献   
9.
Initial (Fo), maximum (Fm) and steady-state (Fs) levels of modulated chlorophyll fluorescence were measured in intact avocado leaves (Persea americana Mill.) during state 1-state 2 transitions using a combination of modulated and non-modulated lights with synchronized detection. Under normal temperature conditions (20°C), transition from state 2 to state 1 was associated with a substantial increase (about 20%) in Fm and Fo whereas the Fm/Fo ratio remained constant, reflecting increased absorption cross-section of PS II. On the contrary, at moderately elevated temperature (35°C), these fluorescence changes were very limited, indicating marked inhibition of the state regulation. The fraction of light distributed to PS II () was calculated from the Fo, Fm and Fs levels for both types of leaves. In control leaves, varied from 48% (in state 2) to values as high as 58% (in state 1). In contrast, mild heat treatment resulted in values close to 50% in both states, indicating the inability of heated leaves to reach extreme state 1. The results suggested that avocado leaves under moderately elevated temperature conditions are blocked in a state close to state 2. This effect was shown to occur in a non-injurious temperature range (as shown by the preservation of the (photoacoustically monitored) oxygen evolution activity) and to be rapidly reversed upon lowering of the temperature. Thermally induced development of state 2 (independent on the light spectral quality) could possibly be a protective mechanism to avoid photodamage of the heat-labile PS II by high light intensities which usually accompany heat stress in the field.  相似文献   
10.
A yeast-mycelium (Y-M) transition of Candida albicans (3153A) was induced by 1.5 mM CaCl2 · 2H2O in defined liquid medium, pH 7, at 25 °C. Germ tube formation was detected after approximately 8 h and peaks of maximum germination occurred at approximately 20 h in all experimental treatments. Non-toxic concentrations of the calmodulin inhibitor R24571 almost completely suppressed germ tube formation whereas trifluoperazine (TFP) and the Ca2+ ionophore A23187 were only about half as effective. Further Ca2+ addition failed to reverse the inhibitory effect of R24571 and induced only about 10% of the cells inhibited by TFP or A23187 to germinate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号