首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15088篇
  免费   1276篇
  国内免费   1288篇
  17652篇
  2024年   64篇
  2023年   357篇
  2022年   417篇
  2021年   550篇
  2020年   536篇
  2019年   602篇
  2018年   545篇
  2017年   495篇
  2016年   561篇
  2015年   651篇
  2014年   904篇
  2013年   1103篇
  2012年   703篇
  2011年   829篇
  2010年   623篇
  2009年   792篇
  2008年   852篇
  2007年   816篇
  2006年   693篇
  2005年   660篇
  2004年   545篇
  2003年   462篇
  2002年   386篇
  2001年   314篇
  2000年   330篇
  1999年   293篇
  1998年   273篇
  1997年   208篇
  1996年   198篇
  1995年   204篇
  1994年   141篇
  1993年   177篇
  1992年   148篇
  1991年   159篇
  1990年   132篇
  1989年   104篇
  1988年   92篇
  1987年   76篇
  1986年   80篇
  1985年   100篇
  1984年   94篇
  1983年   61篇
  1982年   95篇
  1981年   47篇
  1980年   49篇
  1979年   33篇
  1978年   27篇
  1977年   13篇
  1976年   14篇
  1974年   10篇
排序方式: 共有10000条查询结果,搜索用时 18 毫秒
1.
Mitochondria mobilize iron from ferritin by a mechanism that depends on external FMN. With rat liver mitochondria, the rate of mobilization of iron is higher from rat liver ferritin than from horse spleen ferritin. With horse liver mitochondria, the rate of iron mobilization is higher from horse spleen ferritin than from rat liver ferritin. The results are explained by a higher affinity between mitochondria and ferritins of the same species. The mobilization of iron increases with the iron content of the ferritin and then levels off. A maximum is reached with ferritins containing about 1 200 iron atoms per molecule. The results represent further evidence that ferritin may function as a direct iron donor to the mitochondria.  相似文献   
2.
The fungal fruiting body or mushroom is a multicellular structure essential for sexual reproduction. It is composed of dikaryotic cells that contain one haploid nucleus from each mating partner sharing the same cytoplasm without undergoing nuclear fusion. In the mushroom, the pileus bears the hymenium, a layer of cells that includes the specialized basidia in which nuclear fusion, meiosis, and sporulation occur. Coprinopsis cinerea is a well-known model fungus used to study developmental processes associated with the formation of the fruiting body. Here we describe that knocking down the expression of Atr1 and Chk1, two kinases shown to be involved in the response to DNA damage in a number of eukaryotic organisms, dramatically impairs the ability to develop fruiting bodies in C. cinerea, as well as other developmental decisions such as sclerotia formation. These developmental defects correlated with the impairment in silenced strains to sustain an appropriated dikaryotic cell cycle. Dikaryotic cells in which chk1 or atr1 genes were silenced displayed a higher level of asynchronous mitosis and as a consequence aberrant cells carrying an unbalanced dose of nuclei. Since fruiting body initiation is dependent on the balanced mating-type regulator doses present in the dikaryon, we believe that the observed developmental defects were a consequence of the impaired cell cycle in the dikaryon. Our results suggest a connection between the DNA damage response cascade, cell cycle regulation, and developmental processes in this fungus.  相似文献   
3.
4.
5.
Large scale irrigation schemes are vitally important for food security in developing countries. This is especially relevant in subtropical countries where there is pressure on their water resources. However, the potential impacts on the fish communities of the rivers associated with these irrigation systems are extensive and potentially devastating. Therefore, the aim of the study was to evaluate the impact of the Vaalharts Irrigation Scheme (VHIS) on the fish community of two rivers (Harts and Vaal rivers) in the subtropical region of South Africa. The fish community was assessed during a three year period from 2007 to 2009 together with environmental and habitat quality parameters. A multivariate approach together with a local biotic index was used to determine the present ecological state and the environmental drivers responsible for the fish community structure. The results indicated that the fish community was in a largely natural state at the start of the VHIS and increasingly became modified due to various environmental parameters being affected by the irrigation scheme. Annual variation in the fish community structures was high while nitrate, zinc and sulphates corresponded with changes in the fish community. The outcome of the study highlighted that a lack of long term monitoring of fish community structures together with environmental and habitat parameters are a major challenge in many developing countries that can potentially affect management of irrigation schemes and the fish communities associated with the aquatic ecosystems.  相似文献   
6.
《植物生态学报》2018,42(9):963
全球氮沉降不仅改变土壤氮和磷的有效性, 同时也改变氮磷比例。氮磷供应量、比例及其交互作用可能会影响植物种子性状。该研究在内蒙古草原基于沙培盆栽实验种植灰绿藜(Chenopodium glaucum), 设置3个氮磷供应量水平和3个氮磷比例的正交实验来探究氮磷供应量、比例及其交互作用对灰绿藜种子性状的影响。结果发现氮磷供应量对种子氮浓度、磷浓度和萌发率影响的相对贡献(15%-24%)大于氮磷比例(3%-7%), 而种子大小只受氮磷比例的影响。同时氮磷供应量和比例之间的交互作用显著影响种子氮浓度和磷浓度。同等氮磷比例情况下, 低量养分供应提高种子氮浓度、磷浓度和萌发率。氮磷比例只有在养分匮乏的环境中才会对种子大小和萌发率产生显著影响。总之, 灰绿藜种子不同性状对氮或磷限制的敏感性不同, 同时种子性状也对养分限制表现出适应性和被动响应。  相似文献   
7.
8.
9.
The experimental study of the relationship between biodiversity and ecosystem function has mainly addressed the effect of species and number of functional groups. In theory, this approach has mainly focused on how extinction affects function, whereas dispersal limitation of ecosystem function has been rarely discussed. A handful of seed introduction experiments, as well as numerous observations of the effects of long‐distance dispersal of alien species, indicate that ecosystem function may be strongly determined by dispersal limitation at the local, regional and/or global scales. We suggest that it is time to replace biodiversity manipulation experiments, based on random draw of species, with those addressing realistic scenarios of either extinction or dispersal. Experiments disentangling the dispersal limitation of ecosystem function should have to take into account the probability of arrival. The latter is defined as the probability that a propagule of a particular species will arrive at a particular community. Arrival probability depends on the dispersal ability and the number of propagules of a species, the distance a species needs to travel, and the permeability of the matrix landscape. Current databases, in particular those in northwestern and central Europe now enable robust estimation of arrival probability in plant communities. We suggest a general hypothesis claiming that dispersal limitation according to arrival probability will have ecosystem‐level effects different from those arising due to random arrival. This hypothesis may be rendered more region‐, landscape‐ or ecosystem‐specific by estimating arrival probabilities for different background conditions.  相似文献   
10.
Evidence for the presumed linkage between the enigmatic rodlet cells of fish and exposure to helminths is anecdotal and indirect. We evaluated the proliferation and development of rodlet cells in the optic lobes of fathead minnows exposed to cercariae of Ornithodiplostomum ptychocheilus. Mean rodlet cell densities (ca. 10/mm2) in the optic lobes were similar between unexposed controls and minnows with 1- and 2-week old infections. Rodlet cell densities increased at 4 weeks p.i., reaching maxima (ca. 200/mm2) at 6 weeks p.i., followed by a decline at 9 weeks. This temporal pattern of proliferation and maturation paralleled the development of metacercariae within the optic lobes. Unencysted metacercariae develop rapidly within tissues of the optic lobes for approximately 4 weeks after penetration by cercariae, then shift to the adjacent meninges to encyst. The former stage is associated with tissue damage, the latter with massive inflammation of the meninges. Thus, peak densities and maturation of rodlet cells correspond to the period when inflammation of the meninges caused by the large metacercarial cysts is at a maximum. Our results support recent contentions that rodlet cells comprise part of the host inflammatory defence response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号