首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1160篇
  免费   27篇
  国内免费   108篇
  1295篇
  2023年   12篇
  2022年   24篇
  2021年   12篇
  2020年   22篇
  2019年   24篇
  2018年   17篇
  2017年   26篇
  2016年   15篇
  2015年   36篇
  2014年   33篇
  2013年   74篇
  2012年   32篇
  2011年   45篇
  2010年   43篇
  2009年   70篇
  2008年   62篇
  2007年   71篇
  2006年   58篇
  2005年   36篇
  2004年   35篇
  2003年   35篇
  2002年   39篇
  2001年   36篇
  2000年   30篇
  1999年   33篇
  1998年   41篇
  1997年   27篇
  1996年   36篇
  1995年   20篇
  1994年   14篇
  1993年   15篇
  1992年   17篇
  1991年   24篇
  1990年   19篇
  1989年   18篇
  1988年   11篇
  1987年   18篇
  1986年   19篇
  1985年   18篇
  1984年   21篇
  1983年   14篇
  1982年   12篇
  1981年   9篇
  1980年   10篇
  1979年   9篇
  1978年   2篇
  1977年   1篇
排序方式: 共有1295条查询结果,搜索用时 0 毫秒
1.
The formation of R-prime plasmids was selected in crosses involving soybean microsymbionts with genomic Tn5 insertions and carrying plasmid pJB3JI (with one IS2) copy as donors and Escherichia coli HB101 as recipient. Whereas the parent plasmid was 60 kb, recombinant plasmids between 76 kb and 121 kb were obtained. Restriction and Southern analyses confirmed the mobilization of Tn5 on four R-primes from Bradyrhizobium japonicum I-110 and on an R-prime plasmid from Rhizobium fredii HH303. The largest R-prime plasmid was obtained from the rescue of two symbiotically defective R. fredii mutant strains that required adenosine.Non-standard abbreviation TDP transposon donor pool Scientific article number A-4728 and contribution number 7724 of the Maryland Agricultural Experiment Station  相似文献   
2.
Summary Conditional lethality in soybean, Glycine max (L.) Merr., occurred in F2 plants when cytoplasmicchlorophyll mutant Genetic Type T275 was the female parent and when either nuclear mutants T253 or T323 plants were the male parents. Mutant T253 [Mdh1-n (Urbana) y20 (Urbana) k2] is missing two of three mitochondrial malate dehydrogenase isozymes [Mdh1-n (Urbana)] and has yellowish-green leaves [y20 (Urbana)] and a tan-saddle pattern seed coat (k2). Mutant T323 [Mdh1-n (Ames 2) y20 (Ames 2)] also is missing two of three mitochondrial malate dehydrogenase isozymes [Mdh1-n (Ames 2)] and has yellowishgreen leaves [y20 (Ames 2)], but has yellow seed coat (K2). Mutants T275, T253, and T323 are viable both in the field and glasshouse. The genotypes cyt-Y2 Mdh1-n (Urbana) y20 (Urbana) k2/Mdh1-n (Urbana) y20 (Urbana) k2 and cyt-Y2 Mdh1-n (Ames 2) y20 (Ames 2)/Mdh1-n (Ames 2) y20 (Ames 2) are conditional lethals. These genotypes are lethal under field conditions, but plants survive in reduced light under shadecloth in the glasshouse. We do not know if their interaction with cyt-Y2 is due to Mdh1-n, y20, or Mdh1-n y20. The reciprocal cross (cyt-Y2 as male parent) gives viable genotypes. These conditional lethal genotypes should be useful for studies on the interaction between organelle and nuclear genomes.This is journal paper no. J-14777 of the Iowa Agriculture and Home Economics Experiment Station, Ames, IA 50011-1010. Project 2985  相似文献   
3.
M. A. Tanchak  L. C. Fowke 《Protoplasma》1987,138(2-3):173-182
Summary Multivesicular bodies (MVBs) in soybean protoplasts are distinct organelles (generally 250–500 nm in diameter) consisting of a limiting membrane and a number of smaller internal vesicles (generally 40–100 nm in diameter). MVBs of soybean protoplasts are morphologically similar to MVBs of animal cell systems. They can have tubular protuberances which extend from the main body of the organelle and a lamellar plaque on the cytoplasmic surface of their limiting membrane. In addition, the internal vesicles can be labeled by a zinc iodide-osmium tetroxide postfixation and may form via invagination of the limiting membrane.The MVBs of soybean protoplasts are a major compartment in the endocytotic pathway. They accumulate, over time, exogenously applied cationized ferritin and may deliver it to the major lysosomal or lytic compartment of the plant cell, namely, the vacuoles.  相似文献   
4.
Summary By insertional and deletional marker replacement mutagenesis the common nod region of Bradyrhizobium japonicum was examined for the presence of additional, essential nodulation genes. An open reading frame located in the 800 bp large intergenic region between nodD1 and nodA did not appear to be essential for nodulation of soybean. Furthermore, a strain with a deletion of the nodI- and nodJ-like genes downstream of nodC had a Nod+ phenotype. A mutant with a 1.7 kb deletion immediately downstream of nodD1 considerably delayed the onset of nodulation. This region carried a second copy of nodD (nodD2). A nodD1-nodD2 double mutant had a similar phenotype to the nodD2 mutant. Using a 22-mer oligonucleotide probe partially identical to the nod box sequence, a total of six hybridizing regions were identified in B. japonicum genomic DNA and isolated from a cosmid library. Sequencing of the hybridizing regions revealed that at least three of them represented true nod box sequences whereas the others showed considerable deviations from the consensus sequence. One of the three nod box sequences was the one known to be associated with nodA, whereas the other two were located 60 to 70 kb away from nif cluster I. A deletion of one of these two sequences plus adjacent DNA material mmutant 308) led to a reduced nodulation on Vigna radiata but not on soybean. Thus, this region is probably involved in the determination of host specificity.Dedicated to Prof. Giorgio Semenza on the occasion of his 60th birthday  相似文献   
5.
Summary We reported earlier the recovery of two classes of soybean urease mutants in soybean (Glycine max L. Merr. cv. Williams). Class I mutants lack the embryo-specific urease while class II mutants lack the activities of both urease isozymes, the embryo-specific and the ubiquitous urease, the latter found in all tissues examined. We report here the recovery of a true-breeding mutant, aj3, which represents the third phenotypic class: normal levels of embryo-specific urease and little or no ubiquitous urease. Unlike class II mutant plants which lack urease in all tissue, aj3 lacks urease activity only in leaves (ca. 2% normal activity); its roots have near normal urease activity. Callus derived from leaves of aj3 has 14% to 40% the urease activity of Williams 82 callus. This partial reduction in urease activity in aj3 callus is sufficient to reduce growth with urea as sole nitrogen source and to confer resistance to 50 mM urea added to callus maintenance medium. Leaves of aj3 produce more than 40 times the urease antigen expected from their urease activity. The aj3 trait is due to a single recessive lesion which is not allelic with lesions at theEu2, Eu3 (class II) orEu1 (class I) loci. We designate the aj3 genotype aseu4/eu4.  相似文献   
6.
离体培养下大豆体细胞胚胎发生的组织学研究   总被引:6,自引:0,他引:6  
大豆胚状体可以直接从未成熟的子叶表皮及表皮下面1—3层细胞发生。这些细胞经过脱分化后,首先形成细胞质浓厚、核大的胚的发生细胞,胚发生细胞再分裂形成胚性细胞团,胚性细胞团再继续分裂形成胚状体。胚状体的发育过程和合子胚一样,经过球形、心形,鱼雷期和子叶期等诸阶段发育成小植株。此外,在诱导胚状体发生过程中,还观察到另一值得注意的现象:在未成熟胚的子叶表皮下面1至较深处的数层细胞,也转变成分生状细胞团,这些分生状细胞团呈不规则状,从其起源看,可称它们为内生“胚状体”,这些内生“胚状体”培养至20天,即停止生长发育。  相似文献   
7.
Summary A soybean nodulin cDNA clone (E41) hybrid-selected mRNA for three in vitro translation products with apparent molecular weights of 26 kDa, 25 kDa and 24 kDa. Based on Southern analysis of soybean genomic DNA, combined with mapping and sequencing of genomic clones, we identified four genes that are related to E41, one of which was identified to be the previously characterized N-20 gene. Our data indicate the linkage of three of the genes, of which one is a truncated version and suggest that they originated by gene duplication combined with deletion and conversion. The genes are highly expressed and we postulate that the sequence conservation in the 5 and 3 flanking regions of all four genes, has a functional role in their expression. Hybrid-selected translation products of E41 are not immunoprecipitable with antibody to the soluble fraction of nodules suggesting that they are membrane associated. The N-20 gene, which is a member of this gene subfamily, showed sequence similarity to four previously characterized nodulin genes and a phylogenetic tree is proposed based on the extent of sequence similarity.  相似文献   
8.
Summary Soybean [Glycine max (L.) Merr.] cultivars Flambeau and Merit differed in their resistance to Pseudomonas syringae pv glycinea (Psg) race 4, carrying each of four different avirulence (avr) genes cloned from Psg or the related bacterium, Pseudomonas syringae pv tomato. Segregation data for F2 and F3 progeny of Flambeau x Merit crosses indicated that single dominant and nonallelic genes account for resistance to Psg race 4, carrying avirulence genes avrA, avrB, avrC, or avrD. Segregants were also recovered that carried all four or none of the disease resistance genes. One of the disease resistance genes (Rpg1, complementing bacterial avirulence gene B) had been described previously, but the other three genes — designated Rpg2, Rpg3, and Rpg4 — had not here to fore been defined. Rpg3 and Rpg4 are linked (40.5 ± 3.2 recombination units). Rpg4 complements avrD, cloned from Pseudomonas syringae pv tomato, but a functional copy of this avirulence gene has not thus far been observed in Pseudomonas syringae pv glycinea. Resistance gene Rpg4 therefore may account in part for the resistance of soybean to Pseudomonas syringae pv tomato and other pathogens harboring avrD.  相似文献   
9.
Summary Plants from agricultural and natural upland ecosystem were investigated for15N content to evaluate the role of symbiotic N2-fixation in the nitrogen nutrition of soybean. Increased yields and lower δ15N values of nodulating soybeansvs, non-nodulating isolines gave semi-quantitative estimates of N2 fixation. A fairly large discrepancy was found between estimations by δ15N and by N yield at 0 kg N/ha of fertilizer. More precise estimates were made by following changes in plant δ15N when fertilizer δ15N was varied near15N natural abundance level. Clearcut linear relationships between δ15N values of whole plants and of fertilizer were obtained at 30 kg N/ha of fertilizer for three kinds of soils. In experimental field plots, nodulating soybeans obtained 13±1% of their nitrogen from fertilizer, 66±8% from N2 fixation and 21±10% from soil nitrogen in Andosol brown soil; 30%, 16% and 54% in Andosol black soil; 7%, 77% and 16% in Alluvial soil, respectively. These values for N2 fixation coincided with each corresponding estimation by N yield method. Other results include: 1)15N content in upland soils and plants was variable, and may reflect differences in the mode of mineralization of soil organics, and 2) nitrogen isotopic discrimination during fertilizer uptake (δ15N of plant minus fertilizer) ranged from −2.2 to +4.9‰ at 0–30 kg N/ha of fertilizer, depending on soil type and plant species. The proposed method can accurately and relatively simply establish the importance of symbiotic nitrogen fixation for soybeans growing in agricultural settings.  相似文献   
10.
Summary DNA clones that encode the group-II subunits of soybean glycinin were identified and compared with clones for group-I subunits. The group-I clones hybridize weakly to those from group-II at low stringency, but fail to hybridize with them at moderate or high stringency. The genes for the group-II subunits are contained in 13 and 9 kb EcoRI fragments of genomic DNA in cultivar CX635-1-1-1. These fragments contain genes for subunits A5A4B3 and A3B4, respectively. The larger size of mature group-II subunits compared with group-I subunits is correlated with a larger sized mRNA. However, the gross arrangement of introns and exons within the group-II coding regions appears to be the same as for the genes which encode group-I subunits. Messenger RNA for both groups of glycinin subunits appear in the seed at the same developmental interval, and their appearance lags slightly behind that of mRNAs for the a/a subunits of -conglycinin. These data indicate that the glycinin gene family is more complex than previously thought.Abbreviations bp base pairs - kb kilobase pairs - SDS sodium dodecyl sulfate Cooperative research between USDA/ARS and the Indiana Agric. Expt. Station. This work was supported in part by grants from the USDA Competitive Grants Program and the American Soybean Association Research Foundation. This is Journal Paper No. 10,078 from the Purdue Agricultural Experiment Station  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号