首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7722篇
  免费   618篇
  国内免费   727篇
  2024年   11篇
  2023年   161篇
  2022年   240篇
  2021年   306篇
  2020年   354篇
  2019年   346篇
  2018年   298篇
  2017年   289篇
  2016年   326篇
  2015年   349篇
  2014年   493篇
  2013年   607篇
  2012年   316篇
  2011年   470篇
  2010年   341篇
  2009年   459篇
  2008年   400篇
  2007年   428篇
  2006年   355篇
  2005年   324篇
  2004年   309篇
  2003年   272篇
  2002年   215篇
  2001年   157篇
  2000年   134篇
  1999年   118篇
  1998年   113篇
  1997年   84篇
  1996年   84篇
  1995年   74篇
  1994年   79篇
  1993年   54篇
  1992年   56篇
  1991年   56篇
  1990年   42篇
  1989年   30篇
  1988年   26篇
  1987年   31篇
  1986年   35篇
  1985年   34篇
  1984年   35篇
  1983年   21篇
  1982年   22篇
  1981年   27篇
  1980年   23篇
  1979年   22篇
  1978年   9篇
  1976年   12篇
  1974年   4篇
  1973年   6篇
排序方式: 共有9067条查询结果,搜索用时 15 毫秒
1.
Nutrition plays a key role in many aspects of health and dietary imbalances are major determinants of chronic diseases including cardiovascular disease, obesity, diabetes and cancer. Adequate nutrition is particularly essential during critical periods in early life (both pre- and postnatal). In this regard, there is extensive epidemiologic and experimental data showing that early sub-optimal nutrition can have health consequences several decades later.  相似文献   
2.
Compelling evidence suggests the limitation and shortcomings of the current and well established cell culture method using multi-well plates, flasks and Petri dishes. These are particularly important when cell functions are sensitive to the local microenvironment, cell–cell and cell–extracellular matrix interactions. There is a clear need for advanced cell culture systems which mimic in vivo and more physiological conditions. This review summarises and analyses recent progress in three dimensional (3D) cell culture with perfusion as the next generation cell culture tools, while excluding engineered tissue culture where three dimensional scaffold has to be used for structural support and perfusion for overcoming mass transfer control. Apart from research activities in academic community, product development in industry is also included in this review.  相似文献   
3.
Design and Experiments of Biomimetic Stubble Cutter   总被引:1,自引:0,他引:1  
  相似文献   
4.
5.
Computer-aided antibody engineering has been successful in the design of new biologics for disease diagnosis and therapeutic interventions. Interleukin-6 (IL-6), a well-recognized drug target for various autoimmune and inflammatory diseases such as rheumatoid arthritis, multiple sclerosis, and psoriasis, was investigated in silico to design potential lead antibodies. Here, crystal structure of IL-6 along with monoclonal antibody olokizumab was explored to predict antigen–antibody (Ag???Ab)-interacting residues using DiscoTope, Paratome, and PyMOL. Tyr56, Tyr103 in heavy chain and Gly30, Ile31 in light chain of olokizumab were mutated with residues Ser, Thr, Tyr, Trp, and Phe. A set of 899 mutant macromolecules were designed, and binding affinity of these macromolecules to IL-6 was evaluated through Ag???Ab docking (ZDOCK, ClusPro, and Rosetta server), binding free-energy calculations using Molecular Mechanics/Poisson Boltzman Surface Area (MM/PBSA) method, and interaction energy estimation. In comparison to olokizumab, eight newly designed theoretical antibodies demonstrated better result in all assessments. Therefore, these newly designed macromolecules were proposed as potential lead antibodies to serve as a therapeutics option for IL-6-mediated diseases.  相似文献   
6.
The formation of R-prime plasmids was selected in crosses involving soybean microsymbionts with genomic Tn5 insertions and carrying plasmid pJB3JI (with one IS2) copy as donors and Escherichia coli HB101 as recipient. Whereas the parent plasmid was 60 kb, recombinant plasmids between 76 kb and 121 kb were obtained. Restriction and Southern analyses confirmed the mobilization of Tn5 on four R-primes from Bradyrhizobium japonicum I-110 and on an R-prime plasmid from Rhizobium fredii HH303. The largest R-prime plasmid was obtained from the rescue of two symbiotically defective R. fredii mutant strains that required adenosine.Non-standard abbreviation TDP transposon donor pool Scientific article number A-4728 and contribution number 7724 of the Maryland Agricultural Experiment Station  相似文献   
7.
The GH3 family of acyl-acid-amido synthetases catalyze the ATP-dependent formation of amino acid conjugates to modulate levels of active plant hormones, including auxins and jasmonates. Initial biochemical studies of various GH3s show that these enzymes group into three families based on sequence relationships and acyl-acid substrate preference (I, jasmonate-conjugating; II, auxin- and salicylic acid-conjugating; III, benzoate-conjugating); however, little is known about the kinetic and chemical mechanisms of these enzymes. Here we use GH3-8 from Oryza sativa (rice; OsGH3-8), which functions as an indole-acetic acid (IAA)-amido synthetase, for detailed mechanistic studies. Steady-state kinetic analysis shows that the OsGH3-8 requires either Mg2+ or Mn2+ for maximal activity and is specific for aspartate but accepts asparagine as a substrate with a 45-fold decrease in catalytic efficiency and accepts other auxin analogs, including phenyl-acetic acid, indole butyric acid, and naphthalene-acetic acid, as acyl-acid substrates with 1.4–9-fold reductions in kcat/Km relative to IAA. Initial velocity and product inhibition studies indicate that the enzyme uses a Bi Uni Uni Bi Ping Pong reaction sequence. In the first half-reaction, ATP binds first followed by IAA. Next, formation of an adenylated IAA intermediate results in release of pyrophosphate. The second half-reaction begins with binding of aspartate, which reacts with the adenylated intermediate to release IAA-Asp and AMP. Formation of a catalytically competent adenylated-IAA reaction intermediate was confirmed by mass spectrometry. These mechanistic studies provide insight on the reaction catalyzed by the GH3 family of enzymes to modulate plant hormone action.  相似文献   
8.
Novel 2D van der Waals heterostructures with innovative bimetallic oxychloride (Bi‐ and Sb‐based oxychloride) nanosheets that are well dispersed on reduced graphene oxide nanosheets, are established through element engineering for superior potassium ion battery (PIBs) anodes. This material displays an exceptional electrochemical performance, obtaining a discharge capacity as high as 360 mAh g?1 at 100 mA g?1 after running 1000 cycles for over 9 months with a capacity preservation percentage of 88.5% and achieving a discharge capacity as high as 319 mAh g?1 at 1000 mA g?1, in addition to the low charge/discharge plateaus for anodes and promising full cell performance. More significantly, the nature of such 2D van der Waals heterostructures, including the element engineering for morphology control, the function of each component of heterostructures, the mechanism of potassium ion storage, and the process of K+ intercalation accompanied with the lattice distortion and chemical bond breakages, is explored in depth. This study is critical for not only paving the way for the practical application of PIBs but also shedding light on fundamentals of potassium ion storage in 2D van der Waals heterostructures.  相似文献   
9.
The genus Shewanella comprises about 70 species of Gram-negative, facultative anaerobic bacteria inhabiting various environments, which have shown great potential in various biotechnological applications ranging from environmental bioremediation, metal(loid) recovery and material synthesis to bioenergy generation. Most environmental and energy applications of Shewanella involve the biofilm mode of growth on surfaces of solid minerals or electrodes. In this article, we first provide an overview of Shewanella biofilm biology with the focus on biofilm dynamics, biofilm matrix, and key signalling systems involved in Shewanella biofilm development. Then we review strategies recently exploited to engineer Shewanella biofilms to improve biofilm-mediated bioprocesses.  相似文献   
10.
In this research, a proto-type study we have conducted, where we have synthesized tungsten based composite materials which are tungsten along with combined oxides of other elements like calcium, scandium, barium, and aluminium in the form of powder with bones powder of mice devised by high energy ball mill and later on fabricating high dense pellets by sintering by spark plasma. The particle sizes of the composite materials are found to be 1–2 µm, as evidenced by the electron microscope, suggesting synthesized materials are of micron size. The quantitative and qualitative analysis of sintered pellets are well confirmed by electron probe micro analyzer (EPMA) and energy dispersive X-ray spectrometer (EDS) which illustrate the greater percentage of tungsten presents in the profound scan areas with other elements of the composite. The absence of pores across the 3D geometry suggesting dense sample, which is quite revealed by the X-ray tomography inspection. The prepared sintered pellets from the tungsten based composites are found to be ≈ 99.5% density with the observation of tungsten to be accumulated uniformly across the scan regions along with focussed hot spots as implied by EPMA. This study paves the way, to examine how the tungsten accumulation and the distribution with the other elements for future understanding in bone tissue engineering application and the in vivo specification of tungsten.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号